A185732 Accumulation array of the polygonal number array (A086270), by antidiagonals.
1, 4, 2, 10, 9, 3, 20, 24, 15, 4, 35, 50, 42, 22, 5, 56, 90, 90, 64, 30, 6, 84, 147, 165, 140, 90, 39, 7, 120, 224, 273, 260, 200, 120, 49, 8, 165, 324, 420, 434, 375, 270, 154, 60, 9, 220, 450, 612, 672, 630, 510, 350, 192, 72, 10, 286, 605, 855, 984, 980, 861, 665, 440, 234, 85, 11, 364, 792, 1155, 1380, 1440, 1344, 1127, 840, 540, 280, 99, 12, 455, 1014, 1518, 1870, 2025, 1980, 1764, 1428, 1035, 650, 330, 114, 13, 560, 1274, 1950, 2464, 2750, 2790, 2604, 2240
Offset: 1
Examples
Northwest corner: 1....4....10...20...35 2....9....24...50...90 3....15...42...90...165 4....22...64...140..260 5....30...90...200..375
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Crossrefs
Programs
-
Mathematica
f[n_,k_]:=k+n*k(k-1)/2; TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* Array A086270 *) Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten (* A086270 *) s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* acc. arr. of {f(n,k)} *) Factor[s[n,k]] (* formula for A185732 *) TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* acc. arr. A185732 *) Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten (* A185732 *)
Formula
T(n,k) = k*(k+1)*n*(n+1)*(k*n-n+k+5)/12.
Comments