cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185737 Accumulation array of the Wythoff array, read by antidiagonals.

Original entry on oeis.org

1, 3, 5, 6, 14, 11, 11, 28, 30, 20, 19, 51, 60, 54, 32, 32, 88, 109, 108, 86, 46, 53, 148, 188, 196, 172, 123, 63, 87, 245, 316, 338, 312, 246, 168, 82, 142, 402, 523, 568, 538, 446, 336, 218, 104, 231, 656, 858, 940, 904, 769, 609, 436, 276, 129, 375, 1067, 1400, 1542, 1496, 1292, 1050, 790, 552, 342, 156, 608, 1732, 2277, 2516, 2454, 2138, 1764, 1362, 1000, 684, 413, 186
Offset: 1

Views

Author

Clark Kimberling, Feb 02 2011

Keywords

Comments

For the definition of accumulation array, see A144112.

Examples

			Northwest corner:
   1    3    6   11   19  (A001911)
   5   14   28   51   88
  11   30   60  109  188
  20   54  108  196  338
		

Crossrefs

Programs

  • Mathematica
    (* This program creates the Wythoff array W={f(n,k)} = A035513, then the accumulation array A185737 of W, then the weight array A144148 of W *)
    f[n_,0]:=0;f[0,k_]:=0;  (* Needed for the weight array *)
    f[n_,k_]:=Fibonacci[k+1]Floor[n*GoldenRatio]+(n-1)Fibonacci[k];
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]]  (* Wythoff array *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}];
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* A144148 *)
    Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    (* In general,the weight array W of an arbitrary rectangular array S={s(i,j):i<=1,j<=1} is defined in two steps:(1) define s(i,j)=0 if i=0 or j=0; (2) then w(m,n)=s(m,n)+s(m-1,n-1)-s(m,n-1)-s(m-1,n) for m<1,n<1. *)
    w[m_,n_]:=f[m,n]+f[m-1,n-1]-f[m,n-1]-f[m-1,n]/;Or[m>0,n>0];
    TableForm[Table[w[n,k],{n,1,10},{k,1,15}]] (* A144148 *)
    Table[w[n-k+1,k],{n,20},{k,n,1,-1}]//Flatten
  • PARI
    W(n, k) = (n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k); \\ A035513
    T(n, k) = sum(i=1, n, sum(j=1, k, W(i, j))); \\ Michel Marcus, Feb 25 2023