cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185738 Rectangular array T(n,k) = 2^n + k - 2, by antidiagonals.

Original entry on oeis.org

1, 2, 3, 3, 4, 7, 4, 5, 8, 15, 5, 6, 9, 16, 31, 6, 7, 10, 17, 32, 63, 7, 8, 11, 18, 33, 64, 127, 8, 9, 12, 19, 34, 65, 128, 255, 9, 10, 13, 20, 35, 66, 129, 256, 511, 10, 11, 14, 21, 36, 67, 130, 257, 512, 1023, 11, 12, 15, 22, 37, 68, 131, 258, 513, 1024, 2047, 12, 13, 16, 23, 38, 69, 132, 259, 514, 1025, 2048, 4095, 13, 14, 17, 24, 39, 70, 133, 260, 515, 1026, 2049, 4096, 8191, 14, 15, 18, 25, 40, 71, 134, 261, 516, 1027, 2050, 4097, 8192, 16383
Offset: 1

Views

Author

Clark Kimberling, Feb 02 2011

Keywords

Comments

This array fits in a chain: ...->(weight array)->A185738->(accumulation array->...
See the Mathematica code and A144112.

Examples

			Northwest corner:
1....2....3....4....5
3....4....5....6....7
7....8....9....10...11
15...16...17...18...19
31...32...33...34...35
		

Crossrefs

Programs

  • Mathematica
    (* This program prints the array T=A185738, the accumulation array A185739 of T, and the weight array A185740 of T. *)
    f[n_,0]:=0;f[0,k_]:=0;
    f[n_,k_]:=2^n+k-2;
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]]  (* Array A185738 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *)
    FullSimplify[s[n,k]]  (* formula for accumulation array *)
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]]  (* Array A185739 *)
    Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    w[m_,n_]:=f[m,n]+f[m-1,n-1]-f[m,n-1]-f[m-1,n]/;Or[m>0,n>0];
    TableForm[Table[w[n,k],{n,1,10},{k,1,15}]] (* Array A185740 *)
    Table[w[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten

Formula

T(n,k) = 2^n + k - 2, n>=1, k>=1.