cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185788 Sum of the first k-1 numbers in the k-th column of the natural number array A000027, by antidiagonals.

Original entry on oeis.org

0, 2, 12, 37, 84, 160, 272, 427, 632, 894, 1220, 1617, 2092, 2652, 3304, 4055, 4912, 5882, 6972, 8189, 9540, 11032, 12672, 14467, 16424, 18550, 20852, 23337, 26012, 28884, 31960, 35247, 38752, 42482, 46444, 50645, 55092, 59792, 64752, 69979, 75480, 81262, 87332, 93697, 100364, 107340, 114632, 122247, 130192, 138474
Offset: 1

Views

Author

Clark Kimberling, Feb 03 2011

Keywords

Comments

See A185787.

Examples

			Start from
  1.....2....4.....7...11...16...22...29...
  3.....5....8....12...17...23...30...38...
  6.....9...13....18...24...31...39...48...
  10...14...19....25...32...40...49...59...
  15...20...26....33...41...50...60...71...
  21...27...34....42...51...61...72...84...
  28...35...43....52...62...73...85...98...
Block out all terms starting at and below the main diagonal then sum up the remaining terms.
  .....2.....4.....7...11...16...22...29...
  ...........8....12...17...23...30...38...
  ................18...24...31...39...48...
  .....................32...40...49...59...
  ..........................50...60...71...
  ...............................72...84...
  ....................................98...
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:=n+(n+k-2)(n+k-1)/2;
    s[k_]:=Sum[f[n,k],{n,1,k-1}];
    Factor[s[k]]
    Table[s[k],{k,1,70}]
    Table[(n - 1)*(7*n^2 - 11*n + 6)/6, {n, 1, 50}] (* G. C. Greubel, Jul 12 2017 *)
  • PARI
    for(n=1,50, print1((n-1)*(7*n^2 - 11*n + 6)/6, ", ")) \\ G. C. Greubel, Jul 12 2017

Formula

a(n) = (n-1)*(7*n^2 - 11*n + 6)/6. - Corrected by Manfred Arens, Mar 11 2016
G.f.: x^2*(2+4*x+x^2) / (x-1)^4 . - R. J. Mathar, Aug 23 2012