A185871 (Even,even)-polka dot array in the natural number array A000027, by antidiagonals.
5, 12, 14, 23, 25, 27, 38, 40, 42, 44, 57, 59, 61, 63, 65, 80, 82, 84, 86, 88, 90, 107, 109, 111, 113, 115, 117, 119, 138, 140, 142, 144, 146, 148, 150, 152, 173, 175, 177, 179, 181, 183, 185, 187, 189, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, 322, 324, 353, 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, 377, 408, 410, 412, 414, 416, 418, 420, 422, 424, 426, 428, 430, 432, 434
Offset: 1
Examples
Northwest corner: 5....12...23...38...57 14...25...40...59...82 27...42...61...84...111 44...63...86...113..144
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
f[n_,k_]:=2n+(n+k-1)(2n+2k-1); TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
-
Python
from math import comb, isqrt def A185871(n): a = (m:=isqrt(k:=n<<1))+(k>m*(m+1)) x = n-comb(a,2) y = a-x+1 return y*((y+(c:=x<<1)<<1)-3)+x*(c-1)+1 # Chai Wah Wu, Jun 18 2025
Formula
T(n,k) = 2*n + (n+k-1)*(2*n+2*k-1), k>=1, n>=1.
Comments