A185868 (Odd,odd)-polka dot array in the natural number array A000027, by antidiagonals.
1, 4, 6, 11, 13, 15, 22, 24, 26, 28, 37, 39, 41, 43, 45, 56, 58, 60, 62, 64, 66, 79, 81, 83, 85, 87, 89, 91, 106, 108, 110, 112, 114, 116, 118, 120, 137, 139, 141, 143, 145, 147, 149, 151, 153, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323, 325, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370, 372, 374, 376, 378
Offset: 1
Examples
The natural number array A000027 has northwest corner 1...2...4...7...11 3...5...8...12..17 6...9...13..18..24 10..14..19..25..32 15..20..26..33..41 The numbers in (odd,odd) positions comprise A185868: 1....4....11...22...37 6....13...24...39...58 15...26...41...60...83 28...43...62...85...112
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
f[n_,k_]:=2n-1+(n+k-2)(2n+2k-3); TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
-
Python
from math import isqrt, comb def A185868(n): a = (m:=isqrt(k:=n<<1))+(k>m*(m+1)) x = n-comb(a,2) y = a-x+1 return y*((y+(c:=x<<1)<<1)-7)+x*(c-5)+5 # Chai Wah Wu, Jun 18 2025
Formula
T(n,k) = 2*n-1+(n+k-2)*(2*n+2*k-3).
Comments