A185874 Second accumulation array of A051340, by antidiagonals.
1, 3, 4, 6, 11, 10, 10, 21, 26, 20, 15, 34, 48, 50, 35, 21, 50, 76, 90, 85, 56, 28, 69, 110, 140, 150, 133, 84, 36, 91, 150, 200, 230, 231, 196, 120, 45, 116, 196, 270, 325, 350, 336, 276, 165, 55, 144, 248, 350, 435, 490, 504, 468, 375, 220, 66, 175, 306, 440, 560, 651, 700, 696, 630, 495, 286, 78, 209, 370, 540, 700, 833, 924, 960, 930, 825, 638, 364, 91, 246, 440, 650, 855, 1036, 1176, 1260, 1275, 1210, 1056, 806, 455, 105, 286, 516, 770, 1025, 1260, 1456, 1596, 1665, 1650, 1540, 1326, 1001, 560
Offset: 1
Examples
Northwest corner: . 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... . 4, 11, 21, 34, 50, 69, 91, 116, 144, 175, ... . 10, 26, 48, 76, 110, 150, 196, 248, 306, 370, ... . 20, 50, 90, 140, 200, 270, 350, 440, 540, 650, ... . 35, 85, 150, 230, 325, 435, 560, 700, 855, 1025, ... . 56, 133, 231, 350, 490, 651, 833, 1036, 1260, 1505, ... . 84, 196, 336, 504, 700, 924, 1176, 1456, 1764, 2100, ... . 120, 276, 468, 696, 960, 1260, 1596, 1968, 2376, 2820, ... . 165, 375, 630, 930, 1275, 1665, 2100, 2580, 3105, 3675, ... . 220, 495, 825, 1210, 1650, 2145, 2695, 3300, 3960, 4675, ... ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 24.
Crossrefs
Programs
-
Mathematica
f[n_, k_] := (1/12)*k*n*(1 + n)*(1 + 3*k + 2*n); TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 15}]] Table[f[n - k + 1, k], {n, 14}, {k, n, 1, -1}] // Flatten
Formula
T(n,k) = k*n*(n+1)*(2*n+3*k+1)/12 for k>=1, n>=1.
Extensions
Edited by Bruno Berselli, Jan 14 2016
Comments