A185879 Weight array of A185877, by antidiagonals.
1, 2, 0, 4, 2, 0, 6, 2, 2, 0, 8, 2, 2, 2, 0, 10, 2, 2, 2, 2, 0, 12, 2, 2, 2, 2, 2, 0, 14, 2, 2, 2, 2, 2, 2, 0, 16, 2, 2, 2, 2, 2, 2, 2, 0, 18, 2, 2, 2, 2, 2, 2, 2, 2, 0, 20, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 22, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 24, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 26, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0
Offset: 1
Examples
Northwest corner: 1...2...4...6...8...10...12...14 0...2...2...2...2...2....2....2 0...2...2...2...2...2....2....2 0...2...2...2...2...2....2....2 0...2...2...2...2...2....2....2
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
f[n_, k_] := 2; f[1, k_] := 2*(k - 1); f[n_, 1] := 0; f[1, 1] := 1; TableForm[Table[f[n, k], {n, 1, 7}, {k, 1, 7}]] Table[f[n - k + 1, k], {n, 5}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 21 2017 *)
Formula
T(1,k) = 2*(k-1) for k>=1; T(n,1)=0 for n>1; T(n,k)=2 otherwise.
Comments