A185880 Second accumulation array of A185877, by antidiagonals.
1, 5, 3, 16, 17, 6, 40, 56, 38, 10, 85, 140, 128, 70, 15, 161, 295, 320, 240, 115, 21, 280, 553, 670, 600, 400, 175, 28, 456, 952, 1246, 1250, 1000, 616, 252, 36, 705, 1536, 2128, 2310, 2075, 1540, 896, 348, 45, 1045, 2355, 3408, 3920, 3815, 3185, 2240, 1248, 465, 55, 1496, 3465, 5190, 6240, 6440, 5831, 4620, 3120, 1680, 605, 66, 2080, 4928, 7590, 9450, 10200, 9800, 8428, 6420, 4200, 2200
Offset: 1
Examples
Northwest corner: 1, 5, 16, 40, 85 3, 17, 56, 140, 295 6, 38, 128, 320, 670 10, 70, 240, 600, 1250
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Crossrefs
Programs
-
Mathematica
(* This program generates A185878 first and then generates A185880 as the accumulation array of A185878. *) f[n_,k_]:=(k*n/6)(7-3k+2k^2-3n+3kn); TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A185878 *) Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; FullSimplify[s[n,k]] TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* A185880 *) f[n_, k_] := (1/72)*k*(1 + k)*n*(1 + n)*(16 - k + 3 *k^2 + 4 *(-1 + k) *n); Table[f[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 21 2017 *)
Formula
T(n,k) = C(k,2)*C(n,2)*(3*k^2+4*k*n-k-4*n+16)/18, k>=1, n>=1.
Comments