cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A185911 Weight array of A185910, by antidiagonals.

Original entry on oeis.org

1, 1, 3, 1, 0, 5, 1, 0, 0, 7, 1, 0, 0, 0, 9, 1, 0, 0, 0, 0, 11, 1, 0, 0, 0, 0, 0, 13, 1, 0, 0, 0, 0, 0, 0, 15, 1, 0, 0, 0, 0, 0, 0, 0, 17, 1, 0, 0, 0, 0, 0, 0, 0, 0, 19, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 27
Offset: 1

Views

Author

Clark Kimberling, Feb 06 2011

Keywords

Comments

A member of the accumulation chain ... < A185910 < A185911 < A185912 < A185913 < ...
(See A144112 for definitions of weight array and accumulation array.)

Examples

			Northwest corner:
  1, 1, 1, 1, 1, 1
  3, 0, 0, 0, 0, 0
  5, 0, 0, 0, 0, 0
  7, 0, 0, 0, 0, 0
  9, 0, 0, 0, 0, 0
		

Crossrefs

Programs

  • Mathematica
    f[n_, 0] := 0; f[0, k_] := 0; f[n_, k_] := n^2 + k - 1;
    w[m_, n_] := f[m, n] + f[m - 1, n - 1] - f[m, n - 1] - f[m - 1, n] /; Or[m > 0, n > 0];
    Table[w[n - k + 1, k], {n, 50}, {k, n, 1, -1}] // Flatten
    T[1, k_] := 1; T[n_, 1] := 2*n - 1; T[n_, k_] := 0; Table[T[n - k + 1, k], {n, 10}, {k, n, 1, -1}]//Flatten (* G. C. Greubel, Jul 22 2017 *)

Formula

T(1,k) = 1 for k >= 1; T(n,1) = 2*n-1 for n >= 1; T(n,k) = 0 otherwise.

A185912 Accumulation array of A185910; by antidiagonals.

Original entry on oeis.org

1, 3, 5, 6, 12, 14, 10, 21, 31, 30, 15, 32, 51, 64, 55, 21, 45, 74, 102, 115, 91, 28, 60, 100, 144, 180, 188, 140, 36, 77, 129, 190, 250, 291, 287, 204, 45, 96, 161, 240, 325, 400, 441, 416, 285, 55, 117, 196, 294, 405, 515, 602, 636, 579, 385, 66, 140, 234, 352, 490, 636, 770, 864, 882, 780, 506, 78, 165, 275, 414, 580, 763, 945, 1100, 1194, 1185, 1023, 650, 91, 192, 319, 480, 675, 896, 1127, 1344, 1515, 1600, 1551, 1312, 819, 105
Offset: 1

Views

Author

Clark Kimberling, Feb 06 2011

Keywords

Comments

A member of the accumulation chain ... < A185910 < A185911 < A185912 < A185913 < ...
(See A144112 for definitions of weight array and accumulation array.)

Examples

			Northwest corner:
   1,   3,   6,  10,  15
   5,  12,  21,  32,  45
  14,  31,  51,  74, 100
  30,  64, 102, 144, 190
		

Crossrefs

Row 1 to 2: A000217, A028347.
Column 1 to 3: A000330, A037237, 3*A145066.

Programs

  • Mathematica
    f[n_, 0] := 0; f[0, k_] := 0;
    f[n_, k_] := n^2 + k - 1;
    s[n_, k_] := Sum[f[i, j], {i, 1, n}, {j, 1, k}];(*accumulation array of {f(n,k)}*)
    FullSimplify[s[n, k]]  (*formula for A185812*)
    Table[s[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten
    T[n_, k_] := (k*n/6)*(2*n^2 + 3*n + 3*k - 2) ; Table[T[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 22 2017 *)

Formula

T(n,k) = (k*n/6)*(2*n^2 + 3*n + 3*k - 2), k >= 1, n >= 1.

A185913 Accumulation array of A185912, by antidiagonals.

Original entry on oeis.org

1, 4, 6, 10, 21, 20, 20, 48, 66, 50, 35, 90, 144, 160, 105, 56, 150, 260, 340, 330, 196, 84, 231, 420, 600, 690, 609, 336, 120, 336, 630, 950, 1200, 1260, 1036, 540, 165, 468, 896, 1400, 1875, 2170, 2128, 1656, 825, 220, 630, 1224, 1960, 2730, 3360, 3640, 3384, 2520, 1210, 286, 825, 1620, 2640, 3780, 4851, 5600, 5760, 5130, 3685, 1716, 364, 1056, 2090, 3450, 5040, 6664, 8036, 8820, 8700, 7480, 5214, 2366, 455
Offset: 1

Views

Author

Clark Kimberling, Feb 06 2011

Keywords

Comments

A member of the accumulation chain ... < A185910 < A185911 < A185912 < A185913 < ...
(See A144112 for definitions of weight array and accumulation array.)

Examples

			Northwest corner:
1.....4.....10.....20.....35
6.....21....48.....90.....150
20....66....144....260....420
50....160...340....600....950
		

Crossrefs

Row 1 to 2: A000292, 3*A005581.
Column 1: A002415.

Programs

  • Mathematica
    (* The program generates A185912 and its accumulation array A185913 *)
    f[n_,k_]:=(k*n/6)(-2+3k+3n+2n^2);
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]]  (* array A185912 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}];
    FullSimplify[s[n,k]]  (* formula for A185913 *)
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* array A185913 *)
    Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten

Formula

T(n,k) = C(k+1,2)*C(n+1,2)*(n^2+3*n+2*k)/6, k>=1, n>=1.

A055630 Table T(k,m) = k^2 + m read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 4, 2, 2, 9, 5, 3, 3, 16, 10, 6, 4, 4, 25, 17, 11, 7, 5, 5, 36, 26, 18, 12, 8, 6, 6, 49, 37, 27, 19, 13, 9, 7, 7, 64, 50, 38, 28, 20, 14, 10, 8, 8, 81, 65, 51, 39, 29, 21, 15, 11, 9, 9, 100, 82, 66, 52, 40, 30, 22, 16, 12, 10, 10, 121, 101, 83, 67, 53, 41, 31, 23, 17, 13
Offset: 0

Views

Author

Henry Bottomley, Jun 05 2000

Keywords

Examples

			Table begins:
..0...1...4...9..16..25..36..49..64..81.100.121.144...
..1...2...5..10..17..26..37..50..65..82.101.122.145...
..2...3...6..11..18..27..38..51..66..83.102.123.146...
..3...4...7..12..19..28..39..52..67..84.103.124.147...
..4...5...8..13..20..29..40..53..68..85.104.125.148...
..5...6...9..14..21..30..41..54..69..86.105.126.149...
..6...7..10..15..22..31..42..55..70..87.106.127.150...
..7...8..11..16..23..32..43..56..71..88.107.128.151...
..8...9..12..17..24..33..44..57..72..89.108.129.152...
..9..10..13..18..25..34..45..58..73..90.109.130.153...
.10..11..14..19..26..35..46..59..74..91.110.131.154...
... - _Philippe Deléham_, Mar 31 2013
		

Crossrefs

First column is A001477, second column is A000027, first row is A000290, second row is A002522, third row (apart from first term) is A010000, main diagonal is A002378, other diagonals include A028387, A028552, A014209, A002061, A014206, A027688-A027694, each row of A055096 (as upper right triangle) is right hand part of some row of this table
Showing 1-4 of 4 results.