A185911 Weight array of A185910, by antidiagonals.
1, 1, 3, 1, 0, 5, 1, 0, 0, 7, 1, 0, 0, 0, 9, 1, 0, 0, 0, 0, 11, 1, 0, 0, 0, 0, 0, 13, 1, 0, 0, 0, 0, 0, 0, 15, 1, 0, 0, 0, 0, 0, 0, 0, 17, 1, 0, 0, 0, 0, 0, 0, 0, 0, 19, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 27
Offset: 1
Examples
Northwest corner: 1, 1, 1, 1, 1, 1 3, 0, 0, 0, 0, 0 5, 0, 0, 0, 0, 0 7, 0, 0, 0, 0, 0 9, 0, 0, 0, 0, 0
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
f[n_, 0] := 0; f[0, k_] := 0; f[n_, k_] := n^2 + k - 1; w[m_, n_] := f[m, n] + f[m - 1, n - 1] - f[m, n - 1] - f[m - 1, n] /; Or[m > 0, n > 0]; Table[w[n - k + 1, k], {n, 50}, {k, n, 1, -1}] // Flatten T[1, k_] := 1; T[n_, 1] := 2*n - 1; T[n_, k_] := 0; Table[T[n - k + 1, k], {n, 10}, {k, n, 1, -1}]//Flatten (* G. C. Greubel, Jul 22 2017 *)
Formula
T(1,k) = 1 for k >= 1; T(n,1) = 2*n-1 for n >= 1; T(n,k) = 0 otherwise.
Comments