A185934 Lesser of two consecutive primes which both equal 1 (mod 3).
31, 61, 73, 151, 157, 199, 211, 271, 331, 367, 373, 433, 523, 541, 571, 601, 607, 619, 661, 727, 733, 751, 991, 997, 1033, 1063, 1069, 1117, 1123, 1201, 1231, 1237, 1291, 1321, 1381, 1453, 1459, 1531, 1543, 1621, 1657, 1669, 1741, 1747, 1753, 1759, 1777, 1789, 1861, 1987, 2011, 2131, 2161, 2179, 2281, 2287, 2341, 2371
Offset: 1
Keywords
Examples
The smallest prime of the form 6k+1 such that the next larger prime differs by a multiple of 3 (and thus a multiple of 6), is a(1) = 31, the following prime being 31+6 = 37. Note that the next larger prime may also differ by 12 (as is the case for 199,211,619,661,997,1201,1237,1459,1531,1789,3049,...), or by 18 (as it is the case for 523,1069,1381,1759,2161,2503,3889,...), etc.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a185934 n = a185934_list !! (n-1) a185934_list = map (a000040 . (+ 1)) $ elemIndices 1 $ zipWith (*) a039701_list $ tail a039701_list -- Reinhard Zumkeller, Nov 16 2012
-
Mathematica
With[{p = Prime[Range[350]]}, ind = Position[Mod[p, 3], 1] // Flatten; p[[ind[[Position[Differences[ind], 1] // Flatten]]]]] (* Amiram Eldar, Apr 12 2025 *)
-
PARI
forprime( p=1,1e4, (o+0-o=p)%3==0 & o%3==1 & print1( precprime(p-1)","))
Comments