A185945 Riordan array ( (1/(1-x))^m , x*A000108(x) ), m =4.
1, 4, 1, 10, 5, 1, 20, 16, 6, 1, 35, 43, 23, 7, 1, 56, 109, 74, 31, 8, 1, 84, 279, 223, 114, 40, 9, 1, 120, 750, 666, 387, 164, 50, 10, 1, 165, 2148, 2028, 1278, 612, 225, 61, 11, 1, 220, 6529, 6364, 4216, 2188, 910, 298, 73, 12, 1, 286, 20811, 20591, 14062, 7698, 3482, 1294, 384, 86, 13, 1
Offset: 0
Examples
Array begins 1; 4, 1; 10, 5, 1; 20, 16, 6, 1; 35, 43, 23, 7, 1; 56, 109, 74, 31, 8, 1; 84, 279, 223, 114, 40, 9, 1; 120, 750, 666, 387, 164, 50, 10, 1; Production matrix begins: 4, 1; -6, 1, 1; 10, 1, 1, 1; -9, 1, 1, 1, 1; 7, 1, 1, 1, 1, 1; -3, 1, 1, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1, 1, 1; 0, 1, 1, 1, 1, 1, 1, 1, 1; 0, 1, 1, 1, 1, 1, 1, 1, 1, 1; 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; ... _Philippe Deléham_, Sep 20 2014
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
r[n_, k_, m_] := k*Sum[ Binomial[i + m - 1, m - 1]*Binomial[2*(n - i) - k - 1, n - i - 1]/(n - i), {i, 0, n - k}]; r[n_, 0, 4] = Binomial[n + 3, 3]; Table[ r[n, k, 4], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 21 2013 *)
Formula
R(n,k,m) = k*Sum_{i=0..n-k} binomial(i+m-1, m-1)*binomial(2*(n-i)-k-1, n-i-1)/(n-i), m=4, k > 0.
R(n,0,4) = binomial(n+3,3) = A000292(n+1).