cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185945 Riordan array ( (1/(1-x))^m , x*A000108(x) ), m =4.

Original entry on oeis.org

1, 4, 1, 10, 5, 1, 20, 16, 6, 1, 35, 43, 23, 7, 1, 56, 109, 74, 31, 8, 1, 84, 279, 223, 114, 40, 9, 1, 120, 750, 666, 387, 164, 50, 10, 1, 165, 2148, 2028, 1278, 612, 225, 61, 11, 1, 220, 6529, 6364, 4216, 2188, 910, 298, 73, 12, 1, 286, 20811, 20591, 14062, 7698, 3482, 1294, 384, 86, 13, 1
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 07 2011

Keywords

Examples

			Array begins
    1;
    4,   1;
   10,   5,   1;
   20,  16,   6,   1;
   35,  43,  23,   7,   1;
   56, 109,  74,  31,   8,   1;
   84, 279, 223, 114,  40,   9,   1;
  120, 750, 666, 387, 164,  50,  10,   1;
Production matrix begins:
   4, 1;
  -6, 1, 1;
  10, 1, 1, 1;
  -9, 1, 1, 1, 1;
   7, 1, 1, 1, 1, 1;
  -3, 1, 1, 1, 1, 1, 1;
   1, 1, 1, 1, 1, 1, 1, 1;
   0, 1, 1, 1, 1, 1, 1, 1, 1;
   0, 1, 1, 1, 1, 1, 1, 1, 1, 1;
   0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  ... _Philippe Deléham_, Sep 20 2014
		

Crossrefs

Cf. A091491 (m=1), A185943 (m=2), A185944 (m=3).

Programs

  • Mathematica
    r[n_, k_, m_] := k*Sum[ Binomial[i + m - 1, m - 1]*Binomial[2*(n - i) - k - 1, n - i - 1]/(n - i), {i, 0, n - k}]; r[n_, 0, 4] = Binomial[n + 3, 3]; Table[ r[n, k, 4], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 21 2013 *)

Formula

R(n,k,m) = k*Sum_{i=0..n-k} binomial(i+m-1, m-1)*binomial(2*(n-i)-k-1, n-i-1)/(n-i), m=4, k > 0.
R(n,0,4) = binomial(n+3,3) = A000292(n+1).