cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185946 Exponential Riordan array (e^(x), x*A000108(x)).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 21, 9, 1, 1, 184, 90, 16, 1, 1, 2425, 1210, 250, 25, 1, 1, 42396, 21195, 4640, 555, 36, 1, 1, 916909, 458451, 103355, 13475, 1071, 49, 1, 1, 23569456, 11784724, 2705696, 370790, 32816, 1876, 64, 1, 1, 701312049, 350656020, 81531156, 11544246, 1091286, 70644, 3060, 81, 1, 1, 23697421300, 11848710645, 2780716800, 402965850, 39827592, 2789850, 138720, 4725, 100, 1
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 07 2011

Keywords

Examples

			Array begins
  1;
  1,      1;
  1,      4,      1;
  1,     21,      9,      1;
  1,    184,     90,     16,      1;
  1,   2425,   1210,    250,     25,      1;
  1,  42396,  21195,   4640,    555,     36,      1;
  1, 916909, 458451, 103355,  13475,   1071,     49,      1;
		

Crossrefs

Cf. A000108.

Programs

  • Mathematica
    r[n_, k_, m_] := n!/(k-1)!* Sum[m^i/i!*Binomial[2*(n-i)-k-1, n-i-1]/(n-i), {i, 0, n-k}]; r[n_, 0, m_] = 1; Table[r[n, k, 1], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 14 2013, after Vladimir Kruchinin *)

Formula

R(n,k,m) = (n!/(k-1)!) * Sum_{i=0..(n-k)} (m^i/i!)*binomial(2*(n-i)-k-1,n-i-1)/(n-i), k>0, m=1, R(n,0,1) = 1.