A185967 Inverse of Riordan array ((1-x)(1-x^2)(1-x^3)/(1-x^6), x(1-x)(1-x^2)(1-x^3)/(1-x^6)).
1, 1, 1, 3, 2, 1, 10, 7, 3, 1, 37, 26, 12, 4, 1, 146, 103, 49, 18, 5, 1, 602, 426, 207, 80, 25, 6, 1, 2563, 1818, 897, 359, 120, 33, 7, 1, 11181, 7946, 3966, 1628, 570, 170, 42, 8, 1, 49720, 35389, 17823, 7458, 2701, 852, 231, 52, 9, 1, 224540, 160024, 81177, 34484, 12815, 4212, 1218, 304, 63, 10, 1
Offset: 0
Examples
Triangle begins 1, 1, 1, 3, 2, 1, 10, 7, 3, 1, 37, 26, 12, 4, 1, 146, 103, 49, 18, 5, 1, 602, 426, 207, 80, 25, 6, 1, 2563, 1818, 897, 359, 120, 33, 7, 1, 11181, 7946, 3966, 1628, 570, 170, 42, 8, 1, 49720, 35389, 17823, 7458, 2701, 852, 231, 52, 9, 1, 224540, 160024, 81177, 34484, 12815, 4212, 1218, 304, 63, 10, 1 Production matrix is 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 2, 1, 1, 5, 4, 3, 2, 1, 1, 6, 5, 4, 3, 2, 1, 1, 7, 6, 5, 4, 3, 2, 1, 1, 8, 7, 6, 5, 4, 3, 2, 1, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1
Links
- Emeric Deutsch, Luca Ferrari, and Simone Rinaldi, Production Matrices, Advances in Mathematics, 34 (2005) pp. 101-122.
- JiSun Huh, Sangwook Kim, Seunghyun Seo, and Heesung Shin, Bijections on pattern avoiding inversion sequences and related objects, arXiv:2404.04091 [math.CO], 2024. See p. 22.
Programs
-
Maple
T := (n, k) -> `if`(n=k, 1, (1 + k)*(n - k)*hypergeom([1 + k - n, -n, 1 - k + n], [3/2, 2], 1/4)): seq(seq(simplify(T(n, k)), k=0..n),n=0..10); # Peter Luschny, Apr 02 2019
-
Mathematica
T[n_, k_] := (k+1)/(n+1) Sum[Binomial[n+1, i] Binomial[n-k+i-1, n-k-i], {i, 0, n-k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 25 2019, after Vladimir Kruchinin *)
-
Maxima
T(n,k):=(k+1)/(n+1)*sum(binomial(n+1,i)*binomial(n-k+i-1,n-k-i),i,0,n-k); /* Vladimir Kruchinin, Apr 02 2019 */
Formula
T(n, k) = (k + 1)/(n + 1)*Sum_{i=0..n-k} C(n+1, i)*C(n-k+i-1, n-k-i). - Vladimir Kruchinin, Apr 02 2019
T(n, k) = (1 + k)*(n - k)*hypergeom([1 + k - n, -n, 1 - k + n], [3/2, 2], 1/4) for k < n. - Peter Luschny, Apr 02 2019
Comments