cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185967 Inverse of Riordan array ((1-x)(1-x^2)(1-x^3)/(1-x^6), x(1-x)(1-x^2)(1-x^3)/(1-x^6)).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 10, 7, 3, 1, 37, 26, 12, 4, 1, 146, 103, 49, 18, 5, 1, 602, 426, 207, 80, 25, 6, 1, 2563, 1818, 897, 359, 120, 33, 7, 1, 11181, 7946, 3966, 1628, 570, 170, 42, 8, 1, 49720, 35389, 17823, 7458, 2701, 852, 231, 52, 9, 1, 224540, 160024, 81177, 34484, 12815, 4212, 1218, 304, 63, 10, 1
Offset: 0

Views

Author

Paul Barry, Feb 07 2011

Keywords

Comments

Riordan array (g(x),xg(x)) where x*g(x) = (x+2)/3 - 2*sqrt(1+x+x^2) * cos(arccos(-(2x^3+3x^2+24x-2) / (2(1+x+x^2)^(3/2)))/3)/3.

Examples

			Triangle begins
  1,
  1, 1,
  3, 2, 1,
  10, 7, 3, 1,
  37, 26, 12, 4, 1,
  146, 103, 49, 18, 5, 1,
  602, 426, 207, 80, 25, 6, 1,
  2563, 1818, 897, 359, 120, 33, 7, 1,
  11181, 7946, 3966, 1628, 570, 170, 42, 8, 1,
  49720, 35389, 17823, 7458, 2701, 852, 231, 52, 9, 1,
  224540, 160024, 81177, 34484, 12815, 4212, 1218, 304, 63, 10, 1
Production matrix is
  1, 1,
  2, 1, 1,
  3, 2, 1, 1,
  4, 3, 2, 1, 1,
  5, 4, 3, 2, 1, 1,
  6, 5, 4, 3, 2, 1, 1,
  7, 6, 5, 4, 3, 2, 1, 1,
  8, 7, 6, 5, 4, 3, 2, 1, 1,
  9, 8, 7, 6, 5, 4, 3, 2, 1, 1
  10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1
		

Crossrefs

Inverse of number triangle A185962.
First column is A109081. Row sums are A106228(n+1).

Programs

  • Maple
    T := (n, k) -> `if`(n=k, 1, (1 + k)*(n - k)*hypergeom([1 + k - n, -n, 1 - k + n], [3/2, 2], 1/4)):
    seq(seq(simplify(T(n, k)), k=0..n),n=0..10); # Peter Luschny, Apr 02 2019
  • Mathematica
    T[n_, k_] := (k+1)/(n+1) Sum[Binomial[n+1, i] Binomial[n-k+i-1, n-k-i], {i, 0, n-k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 25 2019, after Vladimir Kruchinin *)
  • Maxima
    T(n,k):=(k+1)/(n+1)*sum(binomial(n+1,i)*binomial(n-k+i-1,n-k-i),i,0,n-k); /* Vladimir Kruchinin, Apr 02 2019 */

Formula

T(n, k) = (k + 1)/(n + 1)*Sum_{i=0..n-k} C(n+1, i)*C(n-k+i-1, n-k-i). - Vladimir Kruchinin, Apr 02 2019
T(n, k) = (1 + k)*(n - k)*hypergeom([1 + k - n, -n, 1 - k + n], [3/2, 2], 1/4) for k < n. - Peter Luschny, Apr 02 2019