A185983 Triangle read by rows: number of set partitions of n elements with k circular connectors.
1, 1, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 8, 4, 2, 1, 1, 20, 15, 14, 1, 1, 6, 53, 61, 68, 11, 3, 1, 25, 159, 267, 295, 97, 32, 1, 1, 93, 556, 1184, 1339, 694, 242, 28, 3, 1, 346, 2195, 5366, 6620, 4436, 1762, 371, 48, 2, 1, 1356, 9413, 25400, 34991, 27497, 12977, 3650, 634, 53, 3
Offset: 0
Examples
For a(4,2) = 8, the set partitions are 1/234, 134/2, 124/3, 123/4, 12/34, 14/23, 1/24/3, and 13/2/4. For a(5,1) = 1, the set partition is 13/25/4. For a(6,6) = 3, the set partitions are 135/246, 14/25/36, 1/2/3/4/5/6. Triangle begins: 1; 1, 0; 1, 0, 1; 1, 0, 3, 1; 1, 0, 8, 4, 2; 1, 1, 20, 15, 14, 1; 1, 6, 53, 61, 68, 11, 3; ...
Links
- Alois P. Heinz, Rows n = 0..60, flattened
- T. Mansour and A. O. Munagi, Block-connected set partitions, European J. Combin., 31 (2010), 887-902.
Crossrefs
Programs
-
Maple
b:= proc(n, i, m, t) option remember; `if`(n=0, x^(t+ `if`(i=m and m<>1, 1, 0)), add(expand(b(n-1, j, max(m, j), `if`(j=m+1, 0, t+`if`(j=1 and i=m and j<>m, 1, 0)))*`if`(j=i+1, x, 1)), j=1..m+1)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 1, 0$2)): seq(T(n), n=0..12); # Alois P. Heinz, Mar 30 2016
-
Mathematica
b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, x^(t + If[i == m && m != 1, 1, 0]), Sum[Expand[b[n - 1, j, Max[m, j], If[j == m + 1, 0, t + If[j == 1 && i == m && j != m, 1, 0]]]*If[j == i + 1, x, 1]], {j, 1, m + 1}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 1, 0, 0] ]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 19 2016, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Oct 14 2011
Comments