cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185983 Triangle read by rows: number of set partitions of n elements with k circular connectors.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 8, 4, 2, 1, 1, 20, 15, 14, 1, 1, 6, 53, 61, 68, 11, 3, 1, 25, 159, 267, 295, 97, 32, 1, 1, 93, 556, 1184, 1339, 694, 242, 28, 3, 1, 346, 2195, 5366, 6620, 4436, 1762, 371, 48, 2, 1, 1356, 9413, 25400, 34991, 27497, 12977, 3650, 634, 53, 3
Offset: 0

Views

Author

Brian Drake, Feb 08 2011

Keywords

Comments

A pair (a,a+1) in a set partition with m blocks is a circular connector if a is in block i and a+1 is in block (i mod m)+1 for some i. In addition, (n,1) is considered a circular connector if n is in block m.

Examples

			For a(4,2) = 8, the set partitions are 1/234, 134/2, 124/3, 123/4, 12/34, 14/23, 1/24/3, and 13/2/4.
For a(5,1) = 1, the set partition is 13/25/4.
For a(6,6) = 3, the set partitions are 135/246, 14/25/36, 1/2/3/4/5/6.
Triangle begins:
  1;
  1, 0;
  1, 0,  1;
  1, 0,  3,  1;
  1, 0,  8,  4,  2;
  1, 1, 20, 15, 14,  1;
  1, 6, 53, 61, 68, 11, 3;
  ...
		

Crossrefs

Cf. A185982. Row sums are A000110.
T(n,n) = A032741(n) if n>0. - Alois P. Heinz, Oct 14 2011
T(2n,n) gives A362944.

Programs

  • Maple
    b:= proc(n, i, m, t) option remember; `if`(n=0, x^(t+
         `if`(i=m and m<>1, 1, 0)), add(expand(b(n-1, j,
          max(m, j), `if`(j=m+1, 0, t+`if`(j=1 and i=m
          and j<>m, 1, 0)))*`if`(j=i+1, x, 1)), j=1..m+1))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 1, 0$2)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Mar 30 2016
  • Mathematica
    b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, x^(t + If[i == m && m != 1, 1, 0]), Sum[Expand[b[n - 1, j, Max[m, j], If[j == m + 1, 0, t + If[j == 1 && i == m && j != m, 1, 0]]]*If[j == i + 1, x, 1]], {j, 1, m + 1}]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 1, 0, 0] ];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 19 2016, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Oct 14 2011