A186005 Distance array associated with ordering A057557 of N X N X N by antidiagonals (distances to xy plane).
1, 3, 2, 4, 6, 5, 7, 8, 12, 11, 9, 13, 15, 22, 21, 10, 16, 23, 26, 37, 36, 14, 18, 27, 38, 42, 58, 57, 17, 24, 30, 43, 59, 64, 86, 85, 19, 28, 39, 47, 65, 87, 93, 122, 121, 20, 31, 44, 60, 70, 94, 123, 130, 167, 166, 25, 33, 48, 66, 88, 100, 131, 168, 176, 222, 221, 29, 40, 51, 71, 95, 124, 138, 177, 223, 232, 288, 287
Offset: 1
Examples
T(2,2)=6, the position of (1,2,2) in the ordering (1,1,1) < (1,1,2) < (1,2,1) < (2,1,1) < (1,1,3) < (1,2,2) < (1,3,1) < ... Northwest corner: 1, 3, 4, 7, 9, 10 2, 6, 8, 13, 16, 18 5, 12, 15, 23, 27, 30 11, 22, 26, 38, 43, 47 21, 37, 42, 59, 65, 70
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
lexicographicLattice[{dim_,maxHeight_}]:=Flatten[Array[Sort@Flatten[(Permutations[#1]&)/@IntegerPartitions[#1+dim-1,{dim}],1]&,maxHeight],1]; lexicographicLatticeHeightArray[{dim_,maxHeight_,axis_}]:=Array[Flatten@Position[Map[#[[axis]]&,lexicographicLattice[{dim,maxHeight}]],#]&,maxHeight]; llha=lexicographicLatticeHeightArray[{3,12,3}]; ordering=lexicographicLattice[{2,Length[llha]}]; llha[[#1,#2]]&@@#1&/@ordering (* Peter J. C. Moses, Feb 15 2011 *)
Comments