A186020 Eigentriangle of the binomial matrix.
1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 15, 9, 4, 1, 1, 52, 31, 14, 5, 1, 1, 203, 121, 54, 20, 6, 1, 1, 877, 523, 233, 85, 27, 7, 1, 1, 4140, 2469, 1101, 400, 125, 35, 8, 1, 1, 21147, 12611, 5625, 2046, 635, 175, 44, 9, 1, 1, 115975, 69161, 30846, 11226, 3488, 952, 236, 54, 10, 1, 1
Offset: 0
Examples
Triangle T begins 1; 1, 1; 2, 1, 1; 5, 3, 1, 1; 15, 9, 4, 1, 1; 52, 31, 14, 5, 1, 1; 203, 121, 54, 20, 6, 1, 1; 877, 523, 233, 85, 27, 7, 1, 1; 4140, 2469, 1101, 400, 125, 35, 8, 1, 1; 21147, 12611, 5625, 2046, 635, 175, 44, 9, 1, 1; 115975, 69161, 30846, 11226, 3488, 952, 236, 54, 10, 1, 1; Inverse is the identity matrix I minus binomial matrix B shifted down once, or T^{-1}(n,k)=if(k=n,1,if(k<n,-binomial(n-1,k),0)). This begins 1; -1, 1; -1, -1, 1; -1, -2, -1, 1; -1, -3, -3, -1, 1; -1, -4, -6, -4, -1, 1; -1, -5, -10, -10, -5, -1, 1; -1, -6, -15, -20, -15, -6, -1, 1; -1, -7, -21, -35, -35, -21, -7, -1, 1; -1, -8, -28, -56, -70, -56, -28, -8, -1, 1; Production matrix is 1, 1; 1, 0, 1; 2, 1, 0, 1; 5, 3, 1, 0, 1; 15, 9, 4, 1, 0, 1; 52, 31, 14, 5, 1, 0, 1; 203, 121, 54, 20, 6, 1, 0, 1; 877, 523, 233, 85, 27, 7, 1, 0, 1; 4140, 2469, 1101, 400, 125, 35, 8, 1, 0, 1; 21147, 12611, 5625, 2046, 635, 175, 44, 9, 1, 0, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Paul Barry, Invariant number triangles, eigentriangles and Somos-4 sequences, arXiv:1107.5490 [math.CO], 2011.
- Emeric Deutsch, Luca Ferrari, and Simone Rinaldi, Production Matrices, Advances in Applied Mathematics, 34 (2005) pp. 101-122.
Programs
-
Mathematica
t[n_, k_] := t[n, k] = If[k == 0, 1, Sum[t[n-j, k-j] Binomial[n-1, j-1], {j, 1, k}]]; T[n_, k_] := t[n, n-k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 27 2018 *)
Formula
Lower triangular (infinite) matrix T = (U - D*P)^{-1} with the unit matrix U, the Pascal matrix P from A007318 and the matrix D with elements delta_{i,j+1}, for i, j >= 0 (row 0 has only 0s). From the Paul Barry paper rewritten in matrix notation. T satisfies P*T = D'*(T - U), with D' the transposed matrix D, that is the diagonal of T has been erased and the row index shifted on the r.h.s. (showing that the name Eigentriangle or -matrix is a misnomer). For finite N X N matrices P*T = D'*(T - U), only up to the last row. - Wolfdieter Lang, Apr 07 2021
Comments