A186022
Diagonal sums of number triangle A186020.
Original entry on oeis.org
1, 1, 3, 6, 19, 62, 239, 1013, 4723, 23870, 129779, 753784, 4651285, 30349577, 208575027, 1504582526, 11358446495, 89501837358, 734420232291, 6262593615501, 55392254339667, 507335283474158, 4804245661175599, 46971060027956608, 473534995965134505, 4916730522706507665
Offset: 0
A186021
a(n) = Bell(n)*(2 - 0^n).
Original entry on oeis.org
1, 2, 4, 10, 30, 104, 406, 1754, 8280, 42294, 231950, 1357140, 8427194, 55288874, 381798644, 2765917090, 20960284294, 165729739608, 1364153612318, 11665484410114, 103448316470744, 949739632313502, 9013431476894646, 88304011710168692, 891917738589610578, 9277180664459998706
Offset: 0
a(4) = A060719(3) + 1 = 29 + 1 = 30.
-
[Bell(n)*(2-0^n): n in [0..50]]; // Vincenzo Librandi, Apr 06 2011
-
A186021List := proc(m) local A, P, n; A := [1,2]; P := [2];
for n from 1 to m - 2 do P := ListTools:-PartialSums([P[-1], op(P)]);
A := [op(A), P[-1]] od; A end: A186021List(26); # Peter Luschny, Mar 24 2022
-
Prepend[Table[2 Sum[Binomial[n, j] BellB[j], {j, 0, n}], {n, 0, 25}], 1] (* Geoffrey Critzer, Aug 28 2014 *)
With[{nmax = 50}, CoefficientList[Series[2*Exp[Exp[x] - 1] - 1, {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jul 24 2017 *)
-
x='x+O('x^50); Vec(serlaplace(2*exp(exp(x) - 1) -1)) \\ G. C. Greubel, Jul 24 2017
-
from itertools import accumulate
def A186021_list(size):
if size < 1: return []
L, accu = [1], [2]
for _ in range(size-1):
accu = list(accumulate([accu[-1]] + accu))
L.append(accu[0])
return L
print(A186021_list(26)) # Peter Luschny, Apr 25 2016
A121207
Triangle read by rows. The definition is by diagonals. The r-th diagonal from the right, for r >= 0, is given by b(0) = b(1) = 1; b(n+1) = Sum_{k=0..n} binomial(n+2,k+r)*a(k).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 9, 15, 1, 1, 5, 14, 31, 52, 1, 1, 6, 20, 54, 121, 203, 1, 1, 7, 27, 85, 233, 523, 877, 1, 1, 8, 35, 125, 400, 1101, 2469, 4140, 1, 1, 9, 44, 175, 635, 2046, 5625, 12611, 21147, 1, 1, 10, 54, 236, 952, 3488, 11226, 30846, 69161, 115975
Offset: 0
Triangle begins (compare also table 9.2 in the Gould-Quaintance reference):
1;
1, 1;
1, 1, 2;
1, 1, 3, 5;
1, 1, 4, 9, 15;
1, 1, 5, 14, 31, 52;
1, 1, 6, 20, 54, 121, 203;
1, 1, 7, 27, 85, 233, 523, 877;
1, 1, 8, 35, 125, 400,1101, 2469, 4140;
1, 1, 9, 44, 175, 635,2046, 5625, 12611, 21147;
1, 1, 10, 54, 236, 952,3488,11226, 30846, 69161, 115975;
1, 1, 11, 65, 309,1366,5579,20425, 65676,180474, 404663, 678570;
1, 1, 12, 77, 395,1893,8494,34685,126817,407787,1120666,2512769,4213597;
- Alois P. Heinz, Rows n = 0..140, flattened
- Robert Dougherty-Bliss, Gosper's algorithm and Bell numbers, arXiv:2210.13520 [cs.SC], 2022.
- Robert Dougherty-Bliss, Experimental Methods in Number Theory and Combinatorics, Ph. D. Dissertation, Rutgers Univ. (2024). See pp. 69-70.
- H. W. Gould and Jocelyn Quaintance, A linear binomial recurrence and the Bell numbers and polynomials, Applicable Analysis and Discrete Mathematics, 1 (2007), 371-385.
-
function Gould_diag(diag, size)
size < 1 && return []
size == 1 && return [1]
L = [1, 1]
accu = ones(BigInt, diag)
for _ in 1:size-2
accu = cumsum(vcat(accu[end], accu))
L = vcat(L, accu[end])
end
L end # Peter Luschny, Mar 30 2022
-
# This is the Jovovic formula with general index 'd'
# where A040027, A045499, etc. use one explicit integer
# Index n+1 is shifted to n from the original formula.
Gould := proc(n, d) local k;
if n <= 1 then return 1 else
return add(binomial(n-1+d, k+d)*Gould(k, d), k=0..n-1);
fi
end:
# row and col refer to the extrapolated super-table:
# working up to row, not row-1, shows also the Bell numbers
# at the end of each row.
for row from 0 to 13 do
for col from 0 to row do
# 'diag' is constant for one of A040027, A045499 etc.
diag := row - col;
printf("%4d, ", Gould(col, diag));
od;
print();
od; # R. J. Mathar
# second Maple program:
T:= proc(n, k) option remember; `if`(k=0, 1,
add(T(n-j, k-j)*binomial(n-1, j-1), j=1..k))
end:
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Jan 08 2018
-
g[n_ /; n <= 1, ] := 1; g[n, d_] := g[n, d] = Sum[ Binomial[n-1+d, k+d]*g[k, d], {k, 0, n-1}]; Flatten[ Table[ diag = row-col; g[col, diag], {row, 0, 13}, {col, 0, row}]] (* Jean-François Alcover, Nov 25 2011, after R. J. Mathar *)
T[n_, k_] := T[n, k] = If[k == 0, 1, Sum[T[n-j, k-j] Binomial[n-1, j-1], {j, 1, k}]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 26 2018, after Alois P. Heinz *)
-
# Computes the n-th diagonal of the triangle reading from the right.
from itertools import accumulate
def Gould_diag(diag, size):
if size < 1: return []
if size == 1: return [1]
L, accu = [1,1], [1]*diag
for _ in range(size-2):
accu = list(accumulate([accu[-1]] + accu))
L.append(accu[-1])
return L # Peter Luschny, Apr 24 2016
A124496
Triangle read by rows: T(n,k) is the number of set partitions of {1,2,...,n} in which the size of the last block is k, 1<=k<=n; the blocks are ordered with increasing least elements.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 31, 14, 5, 1, 1, 121, 54, 20, 6, 1, 1, 523, 233, 85, 27, 7, 1, 1, 2469, 1101, 400, 125, 35, 8, 1, 1, 12611, 5625, 2046, 635, 175, 44, 9, 1, 1, 69161, 30846, 11226, 3488, 952, 236, 54, 10, 1, 1, 404663, 180474, 65676, 20425, 5579, 1366, 309, 65, 11, 1, 1
Offset: 1
T(4,2) = 4 because we have 13|24, 14|23, 12|34 and 1|2|34.
Triangle starts:
1;
1,1;
3,1,1;
9,4,1,1;
31,14,5,1,1;
121,54,20,6,1,1;
523,233,85,27,7,1,1;
2469,1101,400,125,35,8,1,1;
12611,5625,2046,635,175,44,9,1,1;
69161,30846,11226,3488,952,236,54,10,1,1;
404663,180474,65676,20425,5579,1366,309,65,11,1,1;
2512769,1120666,407787,126817,34685,8494,1893,395,77,12,1,1;
...
-
Q[1]:=t*s: for n from 2 to 12 do Q[n]:=expand(t*s*subs(t=1,Q[n-1])+s*diff(Q[n-1],s)+t*Q[n-1]-Q[n-1]) od:for n from 1 to 12 do P[n]:=sort(subs(s=1,Q[n])) od: for n from 1 to 12 do seq(coeff(P[n],t,j),j=1..n) od;
# second Maple program:
T:= proc(n, k) option remember; `if`(n=k, 1,
add(T(n-j, k)*binomial(n-1, j-1), j=1..n-k))
end:
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Jul 05 2016
-
T[n_, k_] := T[n, k] = If[n == k, 1, Sum[T[n-j, k]*Binomial[n-1, j-1], {j, 1, n-k}]];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten; (* Jean-François Alcover, Jul 21 2016, after Alois P. Heinz *)
A160185
Triangle read by rows, (1 / ((-1)*A129184 * A007318 + I)) - I, I = Identity matrix.
Original entry on oeis.org
1, 2, 1, 5, 3, 1, 15, 9, 4, 1, 52, 31, 14, 5, 1, 203, 121, 54, 20, 6, 1, 877, 523, 233, 85, 27, 7, 1, 4140, 2469, 1101, 400, 125, 35, 8, 1, 21147, 12611, 5625, 2046, 635, 175, 44, 9, 1, 115975, 69161, 30846, 11226, 3488, 952, 236, 54, 10, 1
Offset: 0
First few rows of the triangle:
1;
2, 1;
5, 3, 1;
15, 9, 4, 1;
52, 31, 14, 5, 1;
203, 121, 54, 20, 6, 1;
877, 523, 233, 85, 27, 7, 1;
4140, 2469, 1101, 400, 125, 35, 8, 1;
21147, 12611, 5625, 2046, 635, 175, 44, 9, 1;
115975, 69161, 30846, 11226, 3488, 952, 236, 54, 10, 1;
...
A212431
Triangle read by rows: row sums, right and left borders are the Bell sequence, or a shifted variant. See Comments for precise definition.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 5, 3, 2, 5, 15, 9, 8, 5, 15, 52, 31, 28, 25, 15, 52, 203, 121, 108, 100, 90, 52, 203, 877, 523, 466, 425, 405, 364, 203, 877, 4140, 2469, 2202, 2000, 1875, 1820, 1624, 877, 4140, 21147, 12611, 11250, 10230, 9525, 9100, 8932, 7893, 4140, 21147
Offset: 0
First few rows of the triangle are:
1;
1, 1
2, 1, 2;
5, 3, 2, 5;
15, 9, 8, 5, 15;
52, 31, 28, 25, 15, 52;
203, 121, 108, 100, 90, 52, 203;
877, 523, 466, 425, 405, 364, 203, 877;
4140, 2469, 2202, 2000, 1875, 1820, 1624, 877, 4140;
21147, 12611, 11250, 10230, 9525, 9100, 8932, 7893, 4140, 21147;
...
-
b:= proc(n) option remember; `if`(n=0, [1, 0],
add((p-> p+[0, p[1]*x^(n-j)])(b(n-j)*
binomial(n-1, j-1)), j=1..n))
end:
T:= n-> (p-> seq(`if`(i=n, p[1], coeff(
p[2], x, i)), i=0..n))(b(n)):
seq(T(n), n=0..12); # Alois P. Heinz, May 16 2017
-
b[n_] := b[n] = If[n == 0, {1, 0}, Sum[Function[p, p + {0, p[[1]]*x^(n - j)}][b[n - j]*Binomial[n - 1, j - 1]], {j, 1, n}]];
T[n_] := Function[p, Table[If[i == n, p[[1]], Coefficient[p[[2]], x, i]], {i, 0, n}]][b[n]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jun 12 2018, after Alois P. Heinz *)
A343234
Triangle T read by rows: lower triangular Riordan matrix of the Toeplitz type with first column A067687.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 12, 5, 2, 1, 1, 29, 12, 5, 2, 1, 1, 69, 29, 12, 5, 2, 1, 1, 165, 69, 29, 12, 5, 2, 1, 1, 393, 165, 69, 29, 12, 5, 2, 1, 1, 937, 393, 165, 69, 29, 12, 5, 2, 1, 1, 2233, 937, 393, 165, 69, 29, 12, 5, 2, 1, 1
Offset: 0
The triangle T begins:
n \ m 0 1 2 3 4 5 6 7 8 9 ...
-----------------------------------------
0: 1
1: 1 1
2: 2 1 1
3: 5 2 1 1
4: 12 5 2 1 1
5: 29 12 5 2 1 1
6: 69 29 12 5 2 1 1
7: 165 69 29 12 5 2 1 1
8: 393 165 69 29 12 5 2 1 1
9: 937 393 165 69 29 12 5 2 1 1
...
A176663
T(n, k) = [x^k] Sum_{j=0..n} j!*binomial(x, j), for 0 <= k <= n, triangle read by rows.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 2, -2, 1, 1, -4, 9, -5, 1, 1, 20, -41, 30, -9, 1, 1, -100, 233, -195, 76, -14, 1, 1, 620, -1531, 1429, -659, 161, -20, 1, 1, -4420, 11537, -11703, 6110, -1799, 302, -27, 1, 1, 35900, -98047, 106421, -61174, 20650, -4234, 519, -35, 1
Offset: 0
Triangle starts:
{1},
{1, 1},
{1, 0, 1},
{1, 2, -2, 1},
{1, -4, 9, -5, 1},
{1, 20, -41, 30, -9, 1},
{1, -100, 233, -195, 76, -14, 1},
{1, 620, -1531, 1429, -659, 161, -20, 1},
{1, -4420, 11537, -11703, 6110, -1799, 302, -27, 1},
{1, 35900, -98047, 106421, -61174, 20650, -4234, 519, -35, 1},
{1, -326980, 928529, -1066279, 662506, -248675, 59039, -8931, 835, -44, 1}
Row sums are
A040000. Alternating row sums are
A058006, which are also T(n,1).
-
with(PolynomialTools):
T_row := n -> CoefficientList(expand(add(k!*binomial(x, k), k=0..n)), x):
ListTools:-Flatten([seq(T_row(n), n=0..9)]); # Peter Luschny, Jul 02 2019
-
p[x_, n_] := Sum[k! Binomial[x, k], {k, 0, n}];
Table[CoefficientList[FunctionExpand[p[x, n]], x], {n, 0, 10}] // Flatten
(* Alternative: *)
Table[CoefficientList[FunctionExpand[Sum[FactorialPower[x, k], {k, 0, n}]], x], {n, 0, 10}] // Flatten (* Peter Luschny, Jul 02 2019 *)
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 6, 4, 1, 1, 23, 15, 6, 1, 1, 106, 68, 28, 8, 1, 1, 567, 365, 145, 45, 10, 1, 1, 3434, 2215, 877, 262, 66, 12, 1, 1, 23137, 14917, 5936, 1750, 427, 91, 14, 1, 1, 171174, 110324, 43936, 13020, 3108, 648, 120, 16, 1, 1, 1376525, 887232, 353067, 104904, 25125, 5091, 933, 153, 18, 1, 1
Offset: 0
Triangle begins
1;
1, 1;
2, 1, 1;
6, 4, 1, 1;
23, 15, 6, 1, 1;
106, 68, 28, 8, 1, 1;
567, 365, 145, 45, 10, 1, 1;
3434, 2215, 877, 262, 66, 12, 1, 1;
23137, 14917, 5936, 1750, 427, 91, 14, 1, 1;
171174, 110324, 43936, 13020, 3108, 648, 120, 16, 1, 1;
Showing 1-9 of 9 results.
Comments