cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186096 T(n,k)=Number of (n+2)X(k+2) 0..4 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

102251, 1252889, 1252889, 11258613, 22559052, 11258613, 83378583, 280102672, 280102672, 83378583, 531218757, 2743553694, 4527262140, 2743553694, 531218757, 2985984444, 22408644868, 55707179395, 55707179395, 22408644868, 2985984444
Offset: 1

Views

Author

R. H. Hardin, General degree formula intuited by D. S. McNeil in the Sequence Fans Mailing List, Feb 12 2011

Keywords

Comments

Table starts
........102251.........1252889.........11258613...........83378583
.......1252889........22559052........280102672.........2743553694
......11258613.......280102672.......4527262140........55707179395
......83378583......2743553694......55707179395.......837192826927
.....531218757.....22408644868.....558643720724.....10064164793382
....2985984444....157927508610....4754203179765....101247852066065
...15084070635....983600385660...35285910378578....878623899164100
...69482992431...5510351270895..232998389350277...6723402580436327
..295278398390..28148281162513.1389861134920751..46135247077059665
.1168636004931.132536596243411.7581135805604097.287649593317228144

Examples

			Some solutions for 5X4
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..2....0..0..0..2....0..0..0..2....0..0..1..2....0..0..1..2
..0..1..2..1....1..1..2..2....1..1..2..0....1..2..4..4....0..2..1..2
..2..3..3..4....1..2..0..0....3..4..0..1....1..4..1..3....2..4..3..2
		

Formula

Empirical: T(n,k) is a polynomial of degree 4k+30 in n, for fixed k.
Let T(n,k,z) be the number of (n+2)X(k+2) 0..z arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.
Then empirically T(n,k,z) is a polynomial of degree z*k + z*(z+1)*(z+5)/6 in n, for fixed k.