A186180 T(n,k)=Number of (n+2)X(k+2) 0..5 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.
520017, 10084236, 10084236, 143369699, 311128593, 143369699, 1662436696, 6520730198, 6520730198, 1662436696, 16382439469, 105970767207, 188034884094, 105970767207, 16382439469, 140871930232, 1414199542732, 4041778238254
Offset: 1
Examples
Some solutions for 5X4 ..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0 ..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0 ..0..0..0..3....0..0..0..0....0..0..0..0....0..0..0..3....0..0..0..0 ..0..0..0..5....0..0..1..2....0..1..1..4....0..1..5..1....0..0..2..3 ..0..1..1..0....1..2..0..2....3..1..4..1....5..4..4..5....0..2..5..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..178
- R. H. Hardin, Polynomials for columns 1-5
Formula
Empirical: T(n,k) is a polynomial of degree 5k+50 in n, for fixed k.
Let T(n,k,z) be the number of (n+2)X(k+2) 0..z arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.
Then empirically T(n,k,z) is a polynomial of degree z*k + z*(z+1)*(z+5)/6 in n, for fixed k.
Comments