A186222 Adjusted joint rank sequence of (g(i)) and (f(j)) with f(i) after g(j) when f(i)=g(j), where f and g are the triangular numbers and squares. Complement of A186221.
1, 4, 6, 9, 11, 13, 16, 18, 21, 23, 26, 28, 30, 33, 35, 38, 40, 42, 45, 47, 50, 52, 55, 57, 59, 62, 64, 67, 69, 71, 74, 76, 79, 81, 83, 86, 88, 91, 93, 96, 98, 100, 103, 105, 108, 110, 112, 115, 117, 120, 122, 125, 127, 129, 132, 134, 137, 139, 141, 144, 146, 149, 151, 154, 156, 158, 161, 163, 166, 168, 170, 173, 175, 178, 180, 182, 185, 187, 190, 192, 195, 197, 199, 202, 204, 207, 209, 211, 214, 216, 219, 221, 224, 226, 228, 231, 233, 236, 238, 240
Offset: 1
Keywords
Examples
See A186221.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n + Floor(-1/2 + Sqrt(2*n^2)): n in [1..120]]; // G. C. Greubel, Aug 18 2018
-
Mathematica
(* adjusted joint ranking; general formula *) d=-1/4; u=1/2; v=1/2; w=0; x=1; y=0; z=0; h[n_]:=-y+(4x(u*n^2+v*n+w-z-d)+y^2)^(1/2); a[n_]:=n+Floor[h[n]/(2x)]; k[n_]:=-v+(4u(x*n^2+y*n+z-w+d)+v^2)^(1/2); b[n_]:=n+Floor[k[n]/(2u)]; Table[a[n],{n,1,100}] (* A186221 *) Table[b[n],{n,1,100}] (* A186222 *) Table[n + Floor[Sqrt[2*n^2] - 1/2], {n, 1, 120}] (* G. C. Greubel, Aug 18 2018 *)
-
PARI
vector(120, n, n + floor(-1/2 + sqrt(2*n^2))) \\ G. C. Greubel, Aug 18 2018
Formula
a(n) = n + floor(-1/2 + sqrt(2*n^2)).
Comments