cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186266 Expansion of 2F1( 1/2, 3/2; 4; 16*x ).

Original entry on oeis.org

1, 3, 18, 140, 1260, 12474, 132132, 1472328, 17065620, 204155380, 2506399896, 31443925968, 401783498480, 5215458874500, 68633685693000, 914099013896400, 12304253831789700, 167193096184907100, 2291164651422801000, 31637804708163654000, 439903041116118980400
Offset: 0

Views

Author

Olivier Gérard, Feb 16 2011

Keywords

Comments

Combinatorial interpretation welcome.
Could involve planar maps, lattice walks, and interpretations of Catalan numbers.

Crossrefs

Formula close to A000257, A000888, A172392.
Cf. A000108.

Programs

  • Mathematica
    CoefficientList[
    Series[HypergeometricPFQ[{1/2, 3/2}, {4}, 16*x], {x, 0, 20}], x]
    Table[3 CatalanNumber[n] CatalanNumber[n+1] * (n+1) / (n+3), {n, 0, 20}] (* Indranil Ghosh, Mar 05 2017 *)
  • PARI
    c(n) = binomial(2*n,n) / (n+1);
    a(n) = 3 * c(n) * c(n+1) *(n+1) / (n+3); \\ Indranil Ghosh, Mar 05 2017
    
  • Python
    import math
    f=math.factorial
    def C(n,r): return f(n) / f(r) / f(n-r)
    def Catalan(n): return C(2*n, n) / (n+1)
    def A186266(n): return 3 * Catalan(n) * Catalan(n+1) * (n+1) / (n+3) # Indranil Ghosh, Mar 05 2017

Formula

a(n) = 3*A000108(n)*A000108(n+1)*(n+1)/(n+3). - David Scambler, Aug 18 2012
D-finite with recurrence n*(n+3)*a(n) -4*(2*n-1)*(2*n+1)*a(n-1)=0. - R. J. Mathar, Jun 17 2016