A186273 a(n) is the least number k having exactly n representations as m + sigma(m), where sigma(m) is the sum of the divisors of m.
2, 11, 95, 3623, 2363, 6143, 21263, 89303, 202703, 472973, 493763, 1013513, 3986483, 3306713, 2364863, 21283763, 19932413, 29391863, 74887313, 98679263, 87499913, 134797163, 201013313, 267843713, 560472413, 775337063, 361823963, 673985813
Offset: 1
Keywords
Examples
For the n-th term, the n solutions are 2 {1} 11 {4, 5} 95 {32, 39, 47} 3623 {1687, 1727, 1751, 1811} 2363 {1011, 1099, 1139, 1147, 1181} 6143 {2048, 2631, 2863, 2951, 2983, 3007} 21263 {9111, 10231, 10319, 10447, 10471, 10519, 10631} 89303 {38271, 41671, 42991, 43367, 44287, 44311, 44431, 44651}
Links
- Math Forum, Topic: Petaflop machine not required / n + sigma(n) [Broken link]
Crossrefs
Cf. A007368 (smallest k such that sigma(x) = k has exactly n solutions).
Programs
-
Mathematica
nn=1000000; t=Table[n+DivisorSigma[1,n], {n, nn}]; t2=Select[t, # <= 2*nn+1&]; ts=Sort[Tally[t2]]; u=Union[Transpose[ts][[2]]]; c=Complement[Range[Max[u]], u]; If[c != {}, u=Range[c[[1]]-1]]; Table[Select[ts, #[[2]] == n &, 1][[1,1]], {n, u}]
Extensions
Corrected and extended by T. D. Noe, Feb 16 2011
a(13)-a(28) from Donovan Johnson, Feb 17 2011