cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A186293 (A007519(n)-1)/2.

Original entry on oeis.org

8, 20, 36, 44, 48, 56, 68, 96, 116, 120, 128, 140, 156, 168, 176, 200, 204, 216, 224, 228, 260, 284, 288, 296, 300, 308, 320, 336, 380, 384, 404, 428, 440, 464, 468, 476, 488, 504, 516, 524, 548, 564, 576, 596, 600, 608
Offset: 1

Views

Author

Marco Matosic, Feb 17 2011

Keywords

Crossrefs

Cf. A186305.

Programs

Formula

a(n) = A186294(n)-1.
a(n) = 4*A005123(n).

A186304 A007522(n)-2.

Original entry on oeis.org

5, 21, 29, 45, 69, 77, 101, 125, 149, 165, 189, 197, 221, 237, 261, 269, 309, 357, 365, 381, 429, 437, 461, 477, 485, 501, 597, 605, 629, 645, 717, 725, 741, 749, 821, 837, 861, 885, 909, 917, 965, 981, 989, 1029
Offset: 1

Views

Author

Marco Matosic, Feb 17 2011

Keywords

Comments

Extensions to Fermat’s Little Theorem precisely indicate a composite or prime number. See A186293 for an introduction to A186293-A186305.
The sequence shows p-2 where p are the primes == 7 (mod 8).
(k*p+(p-2)) ^ (j*(p-1)+1) == (k*p+((p-1)/2)) ^ (j*(p-1)+(p-2)) == p-2 (mod p).

Programs

  • Mathematica
    Select[Prime[Range[200]],Mod[#,8]==7&]-2 (* Harvey P. Dale, Dec 24 2021 *)
Showing 1-2 of 2 results.