cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186332 Riordan array (1, x + x^2 + x^3 + x^4) without 0-column.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 0, 4, 6, 4, 1, 0, 3, 10, 10, 5, 1, 0, 2, 12, 20, 15, 6, 1, 0, 1, 12, 31, 35, 21, 7, 1, 0, 0, 10, 40, 65, 56, 28, 8, 1, 0, 0, 6, 44, 101, 120, 84, 36, 9, 1, 0, 0, 3, 40, 135, 216, 203, 120, 45, 10, 1, 0, 0, 1, 31, 155, 336, 413, 322, 165, 55, 11, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Feb 17 2011

Keywords

Comments

Columns k >= 1 contain the expansion coefficients T(n,k) = [x^(n-k)] (x + x^2 + x^3 + x^4)^k.
Number of lattice paths from (0,0) to (n,k) using steps (1,1), (2,1), (3,1), (4,1). - Joerg Arndt, Jul 05 2011

Examples

			Array begins
  1;
  1, 1;
  1, 2,  1;
  1, 3,  3,  1;
  0, 4,  6,  4,   1;
  0, 3, 10, 10,   5,   1;
  0, 2, 12, 20,  15,   6,   1;
  0, 1, 12, 31,  35,  21,   7,   1;
  0, 0, 10, 40,  65,  56,  28,   8,   1;
  0, 0,  6, 44, 101, 120,  84,  36,   9,  1;
  0, 0,  3, 40, 135, 216, 203, 120,  45, 10,  1;
  0, 0,  1, 31, 155, 336, 413, 322, 165, 55, 11, 1;
  ...
		

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^m*Binomial[k, k - m]*Binomial[n - 4*m - 1, k - 1], {m, 0, (n - k)/4}];
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 22 2018, from 2nd formula *)

Formula

T(n,k) = Sum_{j=0..k} binomial(k,j) * Sum_{i=0..n-k} binomial(j,i)*binomial(k-j,n-3*k+2*j-i), n>0, n>=k.
T(n,k) = Sum_{m=0..floor((n-k)/4)} (-1)^m*binomial(k,k-m)*binomial(n-4*m-1,k-1), n>0, n>=k.
O.g.f. of row polynomials R(n, x). I.e., o.g.f. of triangle (Riordan): G(z,x) = 1/(1 - x*z*(1+z)*(1+z^2)) - 1 (without column k=0). - Wolfdieter Lang, Jan 29 2021