A186332 Riordan array (1, x + x^2 + x^3 + x^4) without 0-column.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 0, 4, 6, 4, 1, 0, 3, 10, 10, 5, 1, 0, 2, 12, 20, 15, 6, 1, 0, 1, 12, 31, 35, 21, 7, 1, 0, 0, 10, 40, 65, 56, 28, 8, 1, 0, 0, 6, 44, 101, 120, 84, 36, 9, 1, 0, 0, 3, 40, 135, 216, 203, 120, 45, 10, 1, 0, 0, 1, 31, 155, 336, 413, 322, 165, 55, 11, 1
Offset: 1
Examples
Array begins 1; 1, 1; 1, 2, 1; 1, 3, 3, 1; 0, 4, 6, 4, 1; 0, 3, 10, 10, 5, 1; 0, 2, 12, 20, 15, 6, 1; 0, 1, 12, 31, 35, 21, 7, 1; 0, 0, 10, 40, 65, 56, 28, 8, 1; 0, 0, 6, 44, 101, 120, 84, 36, 9, 1; 0, 0, 3, 40, 135, 216, 203, 120, 45, 10, 1; 0, 0, 1, 31, 155, 336, 413, 322, 165, 55, 11, 1; ...
Links
- Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
Programs
-
Mathematica
T[n_, k_] := Sum[(-1)^m*Binomial[k, k - m]*Binomial[n - 4*m - 1, k - 1], {m, 0, (n - k)/4}]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 22 2018, from 2nd formula *)
Formula
T(n,k) = Sum_{j=0..k} binomial(k,j) * Sum_{i=0..n-k} binomial(j,i)*binomial(k-j,n-3*k+2*j-i), n>0, n>=k.
T(n,k) = Sum_{m=0..floor((n-k)/4)} (-1)^m*binomial(k,k-m)*binomial(n-4*m-1,k-1), n>0, n>=k.
O.g.f. of row polynomials R(n, x). I.e., o.g.f. of triangle (Riordan): G(z,x) = 1/(1 - x*z*(1+z)*(1+z^2)) - 1 (without column k=0). - Wolfdieter Lang, Jan 29 2021
Comments