cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186335 A transform of the central binomial coefficients.

Original entry on oeis.org

1, 1, 4, 7, 21, 46, 127, 309, 832, 2131, 5709, 15010, 40281, 107423, 289314, 778087, 2103361, 5687938, 15427099, 41880357, 113912236, 310148223, 845598389, 2307657222, 6304306171, 17237338021, 47170965082, 129181447969, 354027263457, 970851960736, 2664008539017
Offset: 0

Views

Author

Paul Barry, Feb 18 2011

Keywords

Comments

Hankel transform is (-1)^n*A128056(n).

Programs

  • Maple
    A186335 := proc(n)
        add(add(binomial(k-j,n-k-j)*binomial(k,j)*A000984(n-k-j),j=0..n),k=0..n) ;
    end proc: # R. J. Mathar, Feb 13 2015
  • Mathematica
    Table[Sum[Sum[Binomial[k-j,n-k-j]*Binomial[k,j]*Binomial[2*(n-k-j),n-k-j], {j,0,n}], {k,0,n}], {n,0,40}] (* Vaclav Kotesovec, Oct 30 2017 *)

Formula

a(n)=sum{k=0..n, sum{j=0..n, binomial(k-j,n-k-j)*binomial(k,j)*A000984(n-k-j)}}.
Conjecture: n*a(n) +(-2*n+1)*a(n-1) +5*(-n+1)*a(n-2) +3*(2*n-3)*a(n-3) +5*(n-2)*a(n-4)=0. - R. J. Mathar, Feb 13 2015
a(n) ~ ((1+sqrt(21))/2)^(n + 3/2) / (2 * 21^(1/4) * sqrt(Pi*n)) . - Vaclav Kotesovec, Oct 30 2017