A186335 A transform of the central binomial coefficients.
1, 1, 4, 7, 21, 46, 127, 309, 832, 2131, 5709, 15010, 40281, 107423, 289314, 778087, 2103361, 5687938, 15427099, 41880357, 113912236, 310148223, 845598389, 2307657222, 6304306171, 17237338021, 47170965082, 129181447969, 354027263457, 970851960736, 2664008539017
Offset: 0
Programs
-
Maple
A186335 := proc(n) add(add(binomial(k-j,n-k-j)*binomial(k,j)*A000984(n-k-j),j=0..n),k=0..n) ; end proc: # R. J. Mathar, Feb 13 2015
-
Mathematica
Table[Sum[Sum[Binomial[k-j,n-k-j]*Binomial[k,j]*Binomial[2*(n-k-j),n-k-j], {j,0,n}], {k,0,n}], {n,0,40}] (* Vaclav Kotesovec, Oct 30 2017 *)
Formula
a(n)=sum{k=0..n, sum{j=0..n, binomial(k-j,n-k-j)*binomial(k,j)*A000984(n-k-j)}}.
Conjecture: n*a(n) +(-2*n+1)*a(n-1) +5*(-n+1)*a(n-2) +3*(2*n-3)*a(n-3) +5*(n-2)*a(n-4)=0. - R. J. Mathar, Feb 13 2015
a(n) ~ ((1+sqrt(21))/2)^(n + 3/2) / (2 * 21^(1/4) * sqrt(Pi*n)) . - Vaclav Kotesovec, Oct 30 2017
Comments