A186373 Triangle read by rows: T(n,k) is the number of permutations of [n] having k strong fixed blocks (see first comment for definition).
1, 0, 1, 1, 1, 3, 3, 14, 9, 1, 77, 38, 5, 497, 198, 25, 3676, 1229, 134, 1, 30677, 8819, 815, 9, 285335, 71825, 5657, 63, 2928846, 654985, 44549, 419, 1, 32903721, 6615932, 394266, 2868, 13, 401739797, 73357572, 3883182, 20932, 117, 5298600772, 886078937, 42174500, 165662, 928, 1
Offset: 0
Examples
T(3,1) = 3 because we have [123], [1]32, and 21[3] (the strong fixed blocks are shown between square brackets). T(7,3) = 1 because we have [1]32[4]65[7] (the strong fixed blocks are shown between square brackets). Triangle starts: 1; 0, 1; 1, 1; 3, 3; 14, 9, 1; 77, 38, 5; 497, 198, 25; 3676, 1229, 134, 1; 30677, 8819, 815, 9; 285335, 71825, 5657, 63; 2928846, 654985, 44549, 419, 1;
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Maple
b:= proc(n) b(n):=-`if`(n<0, 1, add(b(n-i-1)*i!, i=0..n)) end: f:= proc(n) f(n):=`if`(n<=0, 0, b(n-1)+f(n-1)) end: B:= proc(n, k) option remember; `if`(k=0, 0, `if`(k=1, f(n), add((f(n-i)-1)*B(i,k-1), i=3*k-5..n-3))) end: T:= proc(n, k) option remember; `if`(k=0, b(n), add(b(n-i)*B(i, k), i=3*k-2..n)) end: seq(seq(T(n, k), k=0..ceil(n/3)), n=0..20); # Alois P. Heinz, May 23 2013
-
Mathematica
b[n_] := b[n] = -If[n<0, 1, Sum[b[n-i-1]*i!, {i, 0, n}]]; f[n_] := f[n] = If[n <= 0, 0, b[n-1] + f[n-1]]; B[n_, k_] := B[n, k] = If[k == 0, 0, If[k == 1, f[n], Sum[(f[n-i]-1)*B[i, k-1], {i, 3*k-5, n-3}]]]; T[n_, k_] := T[n, k] = If[k == 0, b[n], Sum[b[n-i]*B[i, k], {i, 3*k-2, n}]]; Table[Table[T[n, k], {k, 0, Ceiling[ n/3]}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 20 2015, after Alois P. Heinz *)
Extensions
Rows n=11-13 (16 terms) from Alois P. Heinz, May 22 2013
Comments