A186430 Generalized Pascal triangle associated with the set of primes.
1, 1, 1, 1, 2, 1, 1, 12, 12, 1, 1, 2, 12, 2, 1, 1, 120, 120, 120, 120, 1, 1, 2, 120, 20, 120, 2, 1, 1, 252, 252, 2520, 2520, 252, 252, 1, 1, 2, 252, 42, 2520, 42, 252, 2, 1, 1, 240, 240, 5040, 5040, 5040, 5040, 240, 240, 1, 1, 2, 240, 40, 5040, 84, 5040, 40, 240, 2, 1
Offset: 0
Examples
Triangle begins: n/k.|..0.....1.....2.....3.....4.....5.....6.....7 ================================================== .0..|..1 .1..|..1.....1 .2..|..1.....2.....1 .3..|..1....12....12.....1 .4..|..1.....2....12.....2.....1 .5..|..1...120...120...120...120.....1 .6..|..1.....2...120....20...120.....2.....1 .7..|..1...252...252..2520..2520...252...252.....1
Links
- M. Bhargava, The factorial function and generalizations, Amer. Math. Monthly, 107(2000), 783-799.
Programs
-
Maple
#A186430 #Uses program for A053657 written by Peter Luschny A053657 := proc(n) local P, p, q, s, r; P := select(isprime, [$2..n]); r:=1; for p in P do s := 0; q := p-1; do if q > (n-1) then break fi; s := s + iquo(n-1, q); q := q*p; od; r := r * p^s; od; r end: T := (n,k) -> A053657(n)/(A053657(k)*A053657(n-k)): for n from 0 to 10 do seq(T(n,k),k = 0..n) end do;
-
Mathematica
b[n_] := Product[p^Sum[Floor[(n - 1)/((p - 1) p^k)], {k, 0, n}], {p, Prime[ Range[n]]}]; T[n_, k_] := b[n]/(b[k] b[n - k]); Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 22 2019 *)
Comments