cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186433 Matrix inverse of A186432.

Original entry on oeis.org

1, -1, 1, 11, -12, 1, -301, 330, -30, 1, 15371, -16856, 1540, -56, 1, -1261501, 1383390, -126420, 4620, -90, 1, 151846331, -166518132, 15217290, -556248, 10890, -132, 1, -25201039501, 27636032242, -2525525002, 92318226, -1807806, 22022, -182, 1
Offset: 0

Views

Author

Peter Bala, Feb 22 2011

Keywords

Examples

			Triangle begins
n/k.|.........0...........1.........2........3.......4......5.....6
===================================================================
.0..|.........1
.1..|........-1...........1
.2..|........11.........-12.........1
.3..|......-301.........330.......-30........1
.4..|.....15371......-16856......1540......-56.......1
.5..|..-1261501.....1383390...-126420.....4620.....-90......1
.6..|.151846331..-166518132..15217290..-556248...10890...-132.....1
..
		

Crossrefs

A002114, A186432 (inverse).

Formula

GENERATING FUNCTION
Conjectural e.g.f.:
... 1/2+1/2{(2*cosh(sqrt(u)*z)-1)/(2*cosh(z)-1)}
= sum {n = 0..inf} R(n,u)*z^(2*n)/(2*n)!
= 1+(u-1)*z^2/2!+(u^2-12*u+11)*z^4/4!+....
RELATIONS WITH OTHER SEQUENCES
Column 0: Signed version of Glaisher's H' numbers A002114.