A186440 Number of prime divisors (counted with multiplicity) of n such that the primitive irreducible trinomial x^n + x^k + 1 is a primitive irreducible polynomial (mod 2) for some k with 0 < k < n (A073726).
1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 3, 3, 2, 2, 1, 2, 3, 1, 1, 2, 2, 4, 2, 1, 1, 2, 3, 2, 2, 2, 4, 3, 2, 3, 1, 1, 1, 4, 4, 2, 1, 2, 2, 2, 1, 3, 4, 1, 3, 2, 5, 2, 1, 2, 2, 2, 2, 3, 1, 2, 3, 4, 2, 4, 1, 4, 2, 2, 3, 4, 1, 3, 2, 2, 1, 2, 3
Offset: 1
Examples
a(48) = 4 because A073726(48) = 100, and Omega(100 = 2^2 * 5^2) = 4.
Links
- Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, Handbook of Applied Cryptography, CRC Press, ISBN: 0-8493-8523-7, October 1996, 816 pages, 5th printing, August 2001.
Extensions
a(49) - a(78) from Nathaniel Johnston, Apr 26 2011