cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186638 a(0)=a(1)=a(2)=0; thereafter a(n) = n*a(n-1) + n*a(n-2)/(n-2) + (-1)^(n-1)*4/(n-2).

Original entry on oeis.org

0, 0, 0, 4, 14, 78, 488, 3526, 28858, 264256, 2678632, 29787932, 360669542, 4723907966, 66555492656, 1003783052878, 16136592266226, 275459689319104, 4976428074043376, 94860000118416084, 1902729366895036542, 40062161968084543054, 883460565601444487384, 20363470614798268185558, 489687069917632739530538, 12264310955130816605856448
Offset: 0

Views

Author

N. J. A. Sloane, Feb 24 2011

Keywords

Comments

Muir gives this recurrence without specifying the initial values.
In general, for the same recurrence a(n) = n*a(n-1) + n*a(n-2)/(n-2) + (-1)^(n-1)*4/(n-2), with a(1)=0, a(2)=0, a(3)=m, is a(n) ~ c * n!, where c = exp(-2) + (BesselI(0,2)-BesselI(1,2))*(m-1)/3. Set m=4 for this sequence and m=1 for A000179. - Vaclav Kotesovec, May 05 2015

References

  • T. Muir, A Treatise on the Theory of Determinants. Dover, NY, 1960, Sect. 132, p. 112.

Crossrefs

A000179 satisfies essentially the same recurrence.

Programs

  • Maple
    W:=proc(n) option remember; if n <= 2 then 0 else
    n*W(n-1)+n*W(n-2)/(n-2)+(-1)^(n-1)*4/(n-2); fi; end;
  • Mathematica
    Flatten[{0,0,RecurrenceTable[{a[2]==0,a[3]==4,a[n]==n*a[n-1]+n*a[n-2]/(n-2)+(-1)^(n-1)*4/(n-2)},a,{n,2,20}]}] (* Vaclav Kotesovec, May 05 2015 *)
  • Maxima
    a[0]:0$ a[1]:0$ a[2]:0$ a[n]:=n*a[n-1]+n*a[n-2]/(n-2)+4*(-1)^(n-1)/(n-2)$ makelist(a[n], n, 0, 25); /* Bruno Berselli, May 23 2011 */

Formula

Recurrence (for n>2): (n-2)*a(n) = (n^2 - 3*n + 3)*a(n-1) + (n^2 - 3*n + 3)*a(n-2) + (n-1)*a(n-3). - Vaclav Kotesovec, May 05 2015
a(n) ~ c * n!, where c = exp(-2) + BesselI(0,2) - BesselI(1,2) = 0.8242837309353508959489495107843515087389944891994982884067... . - Vaclav Kotesovec, May 05 2015