A186642 Decimal expansion of the "squircle" perimeter.
7, 0, 1, 7, 6, 9, 7, 9, 4, 3, 5, 6, 4, 0, 4, 1, 6, 4, 7, 1, 0, 6, 4, 9, 4, 1, 6, 3, 9, 3, 1, 8, 1, 1, 6, 9, 3, 9, 8, 0, 0, 8, 7, 5, 0, 4, 9, 7, 2, 4, 4, 9, 3, 4, 3, 2, 2, 8, 8, 6, 1, 0, 3, 5, 6, 0, 7, 3, 9, 2, 2, 1, 1, 6, 1, 8, 1, 8, 8, 8, 3, 5, 1, 3, 2, 3, 8, 8, 3, 9, 3, 0, 0, 5, 0, 3, 4, 0, 7, 1
Offset: 1
Examples
7.01769794356404...
Links
- Eric Weisstein's World of Mathematics, Squircle
Crossrefs
Cf. A175576 (unit squircle area).
Programs
-
Mathematica
First @ RealDigits[N[2*Integrate[Sqrt[1 + x^(3/2)/(1 - x)^(3/2)]/x^(3/4), {x, 0, 1/2}], 100]] (* This other series formula gives 100 correct digits: *) First @ RealDigits[1/Sqrt[Pi]*NSum[(-1)^(n+1)*Gamma[n - 1/2]*Beta[1/2, (6n + 1)/4, 1 - (3/2)n] / n!, {n, 0, Infinity},WorkingPrecision -> 100, Method -> "AlternatingSigns"], 10, 100]
Formula
-((3^(1/4) MeijerG[{{1/3, 2/3, 5/6, 1, 4/3}, {}}, {{1/12, 5/12, 7/12, 3/4, 13/12}, {}}, 1])/(16 Sqrt[2] Pi^(7/2) Gamma[5/4])). - Eric W. Weisstein, Oct 25 2011
Comments