cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186648 Number of walks f length n on a square lattice ending with x > 0 and y > 0.

Original entry on oeis.org

0, 0, 2, 6, 38, 130, 662, 2380, 11174, 41226, 185642, 695860, 3055670, 11576916, 49995220, 190876696, 814610854, 3128164186, 13233277634, 51046844836, 214488337418, 830382690556, 3470405605900, 13475470680616, 56073057254198, 218269673491780
Offset: 0

Views

Author

Benjamin Phillabaum, Mar 06 2011

Keywords

Examples

			a(3) = 6 {UUR,URU,RUU,RRU,RUR,URR}. Note: you can also go Left or Down, however that appears at the fourth sequence which is too large to put in this space.
		

Crossrefs

Cf. A187151.

Programs

  • Mathematica
    Table[(CoefficientList[Series[(1/2 (E^(2 x) - (BesselI[0, 2 x])))^2, {x, 0, len}], x] Range[0, len]!)[[n + 1]], {n, 0, 25}]

Formula

E.g.f.: ((e^(2*x)-I_0(2*x))/2)^2. - Benjamin Phillabaum, Mar 06 2011
From Benedict W. J. Irwin, May 25 2016: (Start)
If n is even, a(n) = 2^(n-2)*(2^n - 2*2F1((1-n)/2,-n/2;1;1) + n!*Gamma((n+1)/2))/(sqrt(Pi)*Gamma(1 + n/2)^3),
If n is odd, a(n) = 2^(n-2)*(2^n - 2*2F1((1-n)/2,-n/2;1;1)).
(End)
D-finite with recurrence n^2*(n-1)*(75*n-313)*a(n) -2*(334*n^2-1857*n+2052)*(n-1)^2*a(n-1) +8*(68*n^4-1240*n^3+6749*n^2-13464*n+9090)*a(n-2) +32*(300*n^4-2626*n^3+7387*n^2-6699*n-297)*a(n-3) -128*(218*n^2-1444*n+2429)*(-3+n)^2*a(n-4) +512*(2*n-9)*(17*n-105)*(-4+n)^2*a(n-5)=0. - R. J. Mathar, Feb 08 2021