A186710 a(n) = gcd(k^n + 1, (k+1)^n + 1) for the smallest k at which the GCD exceeds 1.
5, 7, 17, 11, 5, 29, 17, 19, 25, 23, 17, 53, 145, 61, 353, 137, 5, 191, 41, 43, 5, 47, 97, 11, 265, 19, 337, 59, 25, 5953, 257, 67, 5, 29, 17, 223, 5, 157, 17, 83, 145, 173, 89, 19, 5, 283, 353, 29, 12625, 307, 17, 107, 5, 121, 1921, 229, 5, 709, 241, 367, 5, 817, 769, 521, 5, 269, 137, 139, 725, 853, 55969, 293, 745, 61, 17, 29, 265
Offset: 2
Keywords
Examples
a(2) = 5 because 2^2 + 1 = 5 and 3^2+1 = 2*5; a(3) = 7 because 5^3 + 1 = 2*3^2*7 and 6^3 + 1 = 7*31.
Crossrefs
Cf. A118119.
Programs
-
Maple
A186710 := proc(n) local k ,g; for k from 1 do g := igcd(k^n+1,(k+1)^n+1) ; if g>1 then return g ; end if; end do: end proc: # R. J. Mathar, Mar 07 2011
Comments