A186722 a(n) = numerator of Sum_{k=1..p-1} 1/k^2 for p the n-th prime.
1, 5, 205, 5369, 1968329, 240505109, 822968714749, 238820721143261, 354019312583809, 10383930672892966877209, 8745363341445960333910369, 33729537728506506466441425661, 46252969210499754415427421586309, 11115284554577186575391010113969347, 20577813589884143264711540636313749803
Offset: 1
Keywords
References
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 22-23.
Links
- R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
Programs
-
Maple
f3:=proc(n) local p; p:=ithprime(n); numer(add(1/i^2,i=1..p-1)); end proc; [seq(f3(n),n=1..20)];
-
Mathematica
Table[Numerator[HarmonicNumber[Prime[n]-1, 2]], {n, 1, 15}] (* Jean-François Alcover, Nov 29 2017 *)
-
PARI
a(n) = my(p=prime(n)); numerator(sum(k=1, p-1, 1/k^2)); \\ Michel Marcus, Apr 05 2015