A186730 Number of n-element subsets that can be chosen from {1,2,...,2*n^2} having element sum n^3.
1, 1, 3, 36, 785, 26404, 1235580, 74394425, 5503963083, 484133307457, 49427802479445, 5750543362215131, 751453252349649771, 109016775078856564392, 17391089152542558703435, 3026419470005398093836960, 570632810506646981058828349, 115900277419940965862120360831
Offset: 0
Keywords
Examples
a(0) = 1: {}. a(1) = 1: {1}. a(2) = 3: {1,7}, {2,6}, {3,5}.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(i
t*(2*i-t+1)/2, 0, `if`(n=0, 1, b(n, i-1, t) +`if`(n b(n^3, 2*n^2, n): seq(a(n), n=0..12); -
Mathematica
$RecursionLimit = 2000; b[n_, i_, t_] := b[n, i, t] = If[i
t (2i-t+1)/2, 0, If[n==0, 1, b[n, i-1, t] + If[nJean-François Alcover, Dec 05 2020, after Alois P. Heinz *)
Comments