cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A133100 Expansion of f(x, x^4) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Sep 11 2007

Keywords

Examples

			G.f. = 1 + x + x^4 + x^7 + x^13 + x^18 + x^27 + x^34 + x^46 + x^55 + x^70 + ...
G.f. = q^9 + q^49 + q^169 + q^289 + q^529 + q^729 + q^1089 + q^1369 + q^1849 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^5] QPochhammer[ -x^4, x^5] QPochhammer[ x^5], {x, 0, n}]; (* Michael Somos, Oct 31 2015 *)
    a[ n_] := SquaresR[ 1, 40 n + 9] / 2; (* Michael Somos, Jan 30 2017 *)
    a[ n_] := If[n < 0, 0, Boole @ IntegerQ @ Sqrt @ (40 n + 9)]; (* Michael Somos, Jan 30 2017 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1,n, 1 + x^k*[-1, 1, 0, 0, 1][k%5 + 1], 1 + x * O(x^n)), n))};
    
  • PARI
    {a(n) = issquare( 40*n + 9)};

Formula

f(x,x^m) = 1 + Sum_{k=1..oo} x^((m+1)*k*(k-1)/2) (x^k + x^(m*k)). - N. J. A. Sloane, Jan 30 2017
The characteristic function of A085787 generalized heptagonal numbers.
Euler transform of period 10 sequence [1, -1, 0, 1, -1, 1, 0, -1, 1, -1, ...].
G.f.: Prod_{k>0} (1 - x^(5*k)) * (1 + x^(5*k - 1)) * (1 + x^(5*k - 4)) = Sum_{k in Z} x^((5*k^2 + 3*k) / 2).
a(n) = |A113429(n)|. a(3*n + 2) = 0.
Sum_{k=1..n} a(k) ~ 2 * sqrt(2/5) * sqrt(n). - Amiram Eldar, Jan 13 2024

A281814 Expansion of f(x, x^8) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Michael Somos, Jan 30 2017

Keywords

Examples

			G.f. = 1 + x + x^8 + x^11 + x^25 + x^30 + x^51 + x^58 + x^86 + x^95 + ...
G.f. = q^49 + q^121 + q^625 + q^841 + q^1849 + q^2209 + q^3721 + q^4225 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SquaresR[ 1, 72 n + 49] / 2;
    a[ n_] := If[ n < 0, 0, Boole @ IntegerQ @ Sqrt @ (72 n + 49)];
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^9] QPochhammer[ -x^8, x^9] QPochhammer[ x^9], {x, 0, n}];
  • PARI
    {a(n) = issquare(72*n + 49)};

Formula

f(x,x^m) = 1 + Sum_{k>=1} x^((m+1)*k*(k-1)/2) (x^k + x^(m*k)). - N. J. A. Sloane, Jan 30 2017
Euler transform of period 18 sequence [1, -1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, 0, -1, 1, -1, ...].
Characteristic function of generalized 11-gonal numbers A195160.
G.f.: Sum_{k in Z} x^(k*(9*k + 7)/2).
G.f.: Product_{k>0} (1 + x^(9*k-8)) * (1 + x^(9*k-1)) * (1 - x^(9*k)).
Sum_{k=1..n} a(k) ~ (2*sqrt(2)/3) * sqrt(n). - Amiram Eldar, Jan 13 2024

A281815 Expansion of f(x, x^10) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jan 30 2017

Keywords

Examples

			G.f. = 1 + x + x^10 + x^13 + x^31 + x^36 + x^63 + x^70 + x^106 + x^115 + ...
G.f. = q^81 + q^169 + q^961 + q^1225 + q^2809 + q^3249 + q^5625 + q^6241 + ...
		

Crossrefs

Cf. A195313.

Programs

  • Mathematica
    a[ n_] := SquaresR[ 1, 88 n + 81] / 2;
    a[ n_] := If[ n < 0, 0, Boole @ IntegerQ @ Sqrt @ (88 n + 81)];
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^11] QPochhammer[ -x^10, x^11] QPochhammer[ x^11], {x, 0, n}];
  • PARI
    {a(n) = issquare(88*n + 81)};

Formula

f(x,x^m) = 1 + Sum_{k>=1} x^((m+1)*k*(k-1)/2) (x^k + x^(m*k)). - N. J. A. Sloane, Jan 30 2017
Euler transform of period 22 sequence [1, -1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, ...].
Characteristic function of generalized 13-gonal numbers A195313.
G.f.: Sum_{k in Z} x^(k*(11*k + 9)/2).
G.f.: Product_{k>0} (1 + x^(11*k-10)) * (1 + x^(11*k-1)) * (1 - x^(11*k)).
Sum_{k=1..n} a(k) ~ (2*sqrt(2/11)) * sqrt(n). - Amiram Eldar, Jan 13 2024
Showing 1-3 of 3 results.