cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186758 Number of permutations of {1,2,...,n} with no increasing cycles of length >=2. A cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1)

Original entry on oeis.org

1, 1, 1, 2, 10, 59, 363, 2491, 19661, 176536, 1767540, 19460671, 233578585, 3036411429, 42507793209, 637606959466, 10201702712738, 173429224591607, 3121728583605435, 59312852905363623, 1186257030934984061, 24911396924131631880, 548050726738352726108
Offset: 0

Views

Author

Emeric Deutsch, Feb 26 2011

Keywords

Comments

a(n) = A186757(n,0).

Examples

			a(3)=2 because we have (1)(2)(3) and (132).
a(4)=10 because we have (1)(2)(34), (1)(243), (132)(4), (142)(3), (143)(2), and the 5 cyclic permutations of {1,2,3,4} different from (1234).
		

Crossrefs

Programs

  • Maple
    g := exp(1+z-exp(z))/(1-z): gser := series(g, z = 0, 25): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 22);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*
          binomial(n-1, j-1)*((j-1)!-`if`(j=1, 0, 1)), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 13 2017
  • Mathematica
    CoefficientList[Series[E^(1+x-E^x)/(1-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 05 2013 *)

Formula

E.g.f.: exp(1+z-exp(z))/(1-z).
a(n) ~ n! * exp(2-exp(1)). - Vaclav Kotesovec, Oct 05 2013
a(n) = Sum_{k=0..1} A186754(n,k). - Alois P. Heinz, Dec 02 2021