cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186762 Number of permutations of {1,2,...,n} having no increasing odd cycles. A cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1)

Original entry on oeis.org

1, 0, 1, 1, 9, 33, 235, 1517, 12593, 111465, 1122819, 12313409, 147949593, 1922353925, 26918452691, 403744456541, 6460109224801, 109820584161393, 1976779056442179, 37558742545087481, 751175283283221129, 15774677696321630525, 347042934659313999539, 7981987292809647817237
Offset: 0

Views

Author

Emeric Deutsch, Feb 27 2011

Keywords

Comments

a(n) = A186761(n,0).

Examples

			a(3)=1 because we have (132).
a(4)=9 because we have (12)(34), (13)(24), (14)(23), and the six cyclic permutations of {1,2,3,4}.
		

Crossrefs

Programs

  • Maple
    g := exp(-sinh(z))/(1-z): gser := series(g, z = 0, 27): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 23);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*
         ((j-1)!-irem(j, 2))*binomial(n-1, j-1), j=1..n))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, May 04 2023
  • Mathematica
    CoefficientList[Series[E^(-Sinh[x])/(1-x), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Mar 16 2014 *)

Formula

E.g.f.: g(z) = exp(-sinh z)/(1-z).
a(n) ~ exp(-sinh(1)) * n! = 0.308756853522... * n!. - Vaclav Kotesovec, Mar 16 2014