cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186764 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k increasing even cycles (0<=k<=n). A cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1)

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 14, 7, 3, 70, 35, 15, 419, 226, 60, 15, 2933, 1582, 420, 105, 23421, 12741, 3423, 630, 105, 210789, 114669, 30807, 5670, 945, 2108144, 1144921, 311160, 55755, 7875, 945, 23189584, 12594131, 3422760, 613305, 86625, 10395, 278279165, 151125052, 41041968, 7429290, 1001385, 114345, 10395
Offset: 0

Views

Author

Emeric Deutsch, Feb 27 2011

Keywords

Comments

Row n contains 1+floor(n/2) entries.
Sum of entries in row n is n!.
T(n,0) = A186765(n).
Sum(k*T(n,k), k>=0) = A080227(n).

Examples

			T(3,1)=3 because we have (1)(23), (12)(3), and (13)(2).
T(4,2)=3 because we have (12)(34), (13)(24), and (14)(23).
Triangle starts:
   1;
   1;
   1,  1;
   3,  3;
  14,  7,  3;
  70, 35, 15;
  ...
		

Crossrefs

Programs

  • Maple
    g := exp((t-1)*(cosh(z)-1))/(1-z): gser := simplify(series(g, z = 0, 15)): for n from 0 to 12 do P[n] := sort(expand(factorial(n)*coeff(gser, z, n))) end do: for n from 0 to 12 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n) option remember; expand(
          `if`(n=0, 1, add(b(n-j)*binomial(n-1, j-1)*
          `if`(j::odd, (j-1)!, x+((j-1)!-1)), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Apr 13 2017
  • Mathematica
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n-j]*Binomial[n-1, j-1]*If[ OddQ[j], (j-1)!, x+(j-1)!-1], {j, 1, n}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n]];
    Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, May 03 2017, after Alois P. Heinz *)

Formula

E.g.f.: G(t,z) = exp((t-1)(cosh z - 1))/(1-z).
The 5-variate e.g.f. H(x,y,u,v,z) of permutations with respect to size (marked by z), number of increasing odd cycles (marked by x), number of increasing even cycles (marked by y), number of nonincreasing odd cycles (marked by u), and number of nonincreasing even cycles (marked by v), is given by
H(x,y,u,v,z) = exp(((x-u)sinh z + (y-v)(cosh z - 1))*(1+z)^{(u-v)/2}/(1-z)^{(u+v)/2}.
We have: G(t,z) = H(1,t,1,1,z).