A186766 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k nonincreasing odd cycles (0<=k<=floor(n/3)). A cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1)
1, 1, 2, 5, 1, 20, 4, 77, 43, 472, 238, 10, 2585, 2385, 70, 21968, 16504, 1848, 157113, 189695, 15792, 280, 1724064, 1591082, 310854, 2800, 15229645, 21449481, 3100614, 137060, 204738624, 213397204, 59267252, 1583120, 15400, 2151199429, 3347368503, 676271024, 51981644, 200200
Offset: 0
Examples
T(3,1)=1 because we have (132). T(4,1)=4 because we have (1)(243), (143)(2), (142)(3), and (132)(4). Triangle starts: 1; 1; 2; 5,1; 20,4; 77,43;
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Programs
-
Maple
g := exp((1-t)*sinh(z))*(1+z)^((t-1)*1/2)/(1-z)^((t+1)*1/2): gser := simplify(series(g, z = 0, 16)): for n from 0 to 13 do P[n] := sort(expand(factorial(n)*coeff(gser, z, n))) end do: for n from 0 to 13 do seq(coeff(P[n], t, k), k = 0 .. floor((1/3)*n)) end do; # yields sequence in triangular form # second Maple program: b:= proc(n) option remember; expand( `if`(n=0, 1, add(b(n-j)*binomial(n-1, j-1)* `if`(j::even, (j-1)!, 1+x*((j-1)!-1)), j=1..n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)): seq(T(n), n=0..14); # Alois P. Heinz, Apr 13 2017
-
Mathematica
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n-j]*Binomial[n-1, j-1]*If[ EvenQ[j], (j-1)!, 1+x*((j-1)!-1)], {j, 1, n}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, May 03 2017, after Alois P. Heinz *)
Formula
E.g.f.: G(t,z)=exp((1-t)sinh z)*(1+z)^{(t-1)/2}/(1-z)^{(t+1)/2}.
The 5-variate e.g.f. H(x,y,u,v,z) of permutations with respect to size (marked by z), number of increasing odd cycles (marked by x), number of increasing even cycles (marked by y), number of nonincreasing odd cycles (marked by u), and number of nonincreasing even cycles (marked by v), is given by
H(x,y,u,v,z)=exp(((x-u)sinh z + (y-v)(cosh z - 1))*(1+z)^{(u-v)/2}/(1-z)^{(u+v)/2}.
We have: G(t,z)=H(1,1,t,1,z).
Comments