A186767 Number of permutations of {1,2,...,n} having no nonincreasing odd cycles. A cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1)
1, 1, 2, 5, 20, 77, 472, 2585, 21968, 157113, 1724064, 15229645, 204738624, 2151199429, 34194201472, 416221515169, 7631627843840, 105565890206193, 2192501224174080, 33962775502534165, 787900686999286784, 13509825183288167869
Offset: 0
Keywords
Examples
a(3)=5 because we have (1)(2)(3), (1)(23), (12)(3), (13)(2), and (123).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
Programs
-
Maple
g := exp(sinh(z))/sqrt(1-z^2): gser := series(g, z = 0, 27): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 21); # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)* binomial(n-1, j-1)*`if`(j::even, (j-1)!, 1), j=1..n)) end: seq(a(n), n=0..25); # Alois P. Heinz, Apr 13 2017
-
Mathematica
a[n_] := a[n] = If[n==0, 1, Sum[a[n-j]*Binomial[n-1, j-1]*If[EvenQ[j], (j-1)!, 1], {j, 1, n}]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 18 2017, after Alois P. Heinz *)
Formula
E.g.f.: g(z) = exp(sinh z)/sqrt(1-z^2).
Comments