cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186771 Numbers m such that A186711(m) = 1.

Original entry on oeis.org

1, 2, 3, 6, 12, 27, 48, 130, 252, 705, 1386, 2295, 7125, 17316, 31959, 51054, 74601, 102600, 351315, 748440, 2123189, 4198848, 6975417, 10452896, 14631285, 19510584, 25090793, 31371912, 38353941, 46036880, 54420729, 63505488, 73291157, 83777736, 94965225, 106853624, 119442933, 132733152
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 26 2011

Keywords

Comments

Greatest common divisor of A003586(a(n)) and A003586(a(n)+1) is 1.

Examples

			n = 12, a(12) = 2295:
A003586(2295) = 19342813113834066795298816 = 2^84,
A003586(2296) = 19383245667680019896796723 = 3^53 and GCD(2^84,3^53) = 1.
		

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a186771 n = a186771_list !! (n-1)
    a186771_list = map (+ 1) $ findIndices (== 1) a186711_list
    
  • Mathematica
    seq[lim_] := Module[{s = {}, pow3, c2, c3a, c3b}, Do[c2 = c[2^i]; pow3 = 3^Floor[i*Log[3, 2]]; c3a = c[pow3]; c3b = c[3*pow3]; If[c3a + 1 == c2, AppendTo[s, c3a]]; If[c2 + 1 == c3b, AppendTo[s, c2]], {i, 0, c[lim]}]; s]; c[n_] := Sum[1 + Floor[Log[3, n/2^i]], {i, 0, Log2[n]}]; seq[10^14] (* Amiram Eldar, Apr 16 2025 *)
  • PARI
    c(n) = sum(i=0, logint(n, 2), 1 + logint(n\2^i, 3));
    list(lim) = {my(pow3, c2, c3a, c3b); for(i = 0, c(lim), c2 = c(2^i); pow3 = 3^logint(2^i, 3); c3a = c(pow3); c3b = c(3*pow3); if(c3a + 1 == c2, print1(c3a, ", ")); if(c2 + 1 == c3b, print1(c2, ", ")));} \\ Amiram Eldar, Apr 16 2025

Formula

A186927(n) = A003586(a(n)); A186928(n) = A003586(a(n) + 1).

Extensions

a(22)-a(33) from Donovan Johnson, Mar 04 2011
a(34)-a(38) from Amiram Eldar, Apr 16 2025