A186946 The smallest integer x > 0 such that the number of prime powers p^k (k>=1) in (x/2,x] equals n.
2, 3, 5, 9, 13, 25, 29, 31, 43, 49, 71, 73, 81, 103, 109, 113, 127, 131, 139, 157, 173, 181, 191, 193, 199, 239, 241, 269, 271, 283, 289, 293, 313, 349, 353, 361, 373, 379, 409, 419, 421, 433, 439, 443, 463, 499, 509, 523, 571, 577, 599, 601, 607, 613, 619
Offset: 1
Keywords
Links
- Peter J. C. Moses, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a000961Q[n_]:=(Length[FactorInteger[n]]==1) && IntegerQ[n]; nn=99; t=Table[0,{nn+1}]; s=0; Do[If[a000961Q[k], s++]; If[a000961Q[k/2], s--]; If[s<=nn && t[[s+1]]==0, t[[s+1]]=k], {k, 2, Prime[3*nn]}]; Prepend[Rest[t],2] (* after T. D. Noe's code at A080359 *) (* Peter J. C. Moses, Sep 11 2013 *)
Formula
a(n) <= A186945(n).
Extensions
More terms from Peter J. C. Moses, Aug 30 2013
Comments