cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186949 a(n) = 2^n - 2*(binomial(1,n) - binomial(0,n)).

Original entry on oeis.org

1, 0, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824
Offset: 0

Views

Author

Paul Barry, Mar 01 2011

Keywords

Comments

Binomial transform is A186948.
Second binomial transform is A186947.
Inverse binomial transform is (-1)^n * A168277(n).
Essentially the same as A000079, A151821, A155559, A171449, and A171559.

Programs

  • GAP
    Concatenation([1,0], List([2..30], n-> 2^n )); # G. C. Greubel, Dec 01 2019
  • Magma
    [n lt 2 select 1-n else 2^n: n in [0..30]]; // G. C. Greubel, Dec 01 2019
    
  • Maple
    seq( `if`(n<2, 1-n, 2^n), n=0..30); # G. C. Greubel, Dec 01 2019
  • Mathematica
    Table[If[n<2, 1-n, 2^n], {n, 0, 30}] (* G. C. Greubel, Dec 01 2019 *)
  • PARI
    vector(31, n, if(n<3, 2-n, 2^(n-1))) \\ G. C. Greubel, Dec 01 2019
    
  • Sage
    [1,0]+[2^n for n in (2..30)] # G. C. Greubel, Dec 01 2019
    

Formula

G.f.: (1 - 2*x + 4*x^2)/(1-2*x).
a(n) = Sum_{k=0..n} binomial(n,k)*(3^k - 2*k).
E.g.f.: exp(2*x) - 2*x. - G. C. Greubel, Dec 01 2019