cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186972 Irregular triangle T(n,k), n>=1, 1<=k<=A186971(n), read by rows: T(n,k) is the number of k-element subsets of {1, 2, ..., n} containing n and having pairwise coprime elements.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 4, 5, 2, 1, 2, 1, 1, 6, 11, 8, 2, 1, 4, 6, 4, 1, 1, 6, 12, 10, 3, 1, 4, 5, 2, 1, 10, 31, 42, 26, 6, 1, 4, 6, 4, 1, 1, 12, 45, 79, 72, 33, 6, 1, 6, 14, 16, 9, 2, 1, 8, 21, 25, 14, 3, 1, 8, 24, 36, 29, 12, 2, 1, 16, 79, 183, 228, 157, 56, 8, 1, 6, 15, 20, 15, 6, 1
Offset: 1

Views

Author

Alois P. Heinz, Mar 01 2011

Keywords

Comments

T(n,k) = 0 for k>A186971(n). The triangle contains all positive values of T.

Examples

			T(5,3) = 5 because there are 5 3-element subsets of {1,2,3,4,5} containing 5 and having pairwise coprime elements: {1,2,5}, {1,3,5}, {1,4,5}, {2,3,5}, {3,4,5}.
Irregular Triangle T(n,k) begins:
  1;
  1, 1;
  1, 2,  1;
  1, 2,  1;
  1, 4,  5, 2;
  1, 2,  1;
  1, 6, 11, 8, 2;
		

Crossrefs

Columns k=1-10 give: A000012, A000010 (for n>1), A185953, A185348, A186976, A186977, A186978, A186979, A186980, A186981.
Rightmost elements of rows give A186994.
Row sums are A186973.
Cf. A186971.

Programs

  • Maple
    with(numtheory):
    s:= proc(m,r) option remember; mul(`if`(in then 0
        elif k=1 then 1
        elif k=2 and t=n then `if`(n<2, 0, phi(n))
        else c:= 0;
             d:= 2-irem(t,2);
             for h from 1 to n-1 by d do
               if igcd(t, h)=1 then c:= c +b(s(t*h, h), h, k-1) fi
             od; c
          fi
    end:
    T:= proc(n,k) option remember; b(s(n,n),n,k) end:
    seq(seq(T(n, k), k=1..a(n)), n=1..20);
  • Mathematica
    s[m_, r_] := s[m, r] = Product[If[i < r, i, 1], {i, FactorInteger[m][[All, 1]]}]; a[n_] := a[n] = If[n < 4, n, PrimePi[n] - Length[FactorInteger[n]]+2]; b[t_, n_, k_] := b[t, n, k] = Module[{c, d, h}, Which[k == 0 || k > n, 0, k == 1, 1, k == 2 && t == n, If[n < 2, 0, EulerPhi[n]], True, c = 0; d = 2-Mod[t, 2]; For[h = 1, h <= n-1, h = h+d, If[GCD[t, h] == 1, c = c+b[s[t*h, h], h, k-1]]]; c]]; t[n_, k_] := t[n, k] = b[s[n, n], n, k]; Table[Table[t[n, k], {k, 1, a[n]}], {n, 1, 20}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)