A186994 Number of maximal subsets of {1, 2, ..., n} containing n and having pairwise coprime elements.
1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 6, 1, 6, 2, 3, 2, 8, 1, 8, 2, 4, 2, 8, 1, 8, 4, 8, 6, 24, 1, 24, 6, 10, 6, 15, 2, 30, 6, 10, 3, 30, 2, 30, 6, 5, 6, 30, 2, 30, 6, 20, 12, 60, 4, 30, 6, 20, 12, 60, 2, 60, 12, 10, 12, 36, 4, 72, 12, 24, 3, 72, 4, 72, 12, 12, 12, 36
Offset: 1
Examples
a(5) = 2 because there are 2 maximal subsets of {1,2,3,4,5} containing 5 and having pairwise coprime elements: {1,2,3,5}, {1,3,4,5}. a(9) = 3, the maximal subsets are {1,2,5,7,9}, {1,4,5,7,9}, {1,5,7,8,9}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): a:= n-> mul(ilog[j](n), j={ithprime(i)$i=1..pi(n)} minus factorset(n)): seq(a(n), n=1..200);
-
Mathematica
a[n_] := Product[Log[p, n] // Floor, {p, Select[Range[n-1], PrimeQ[#] && GCD[n, #] == 1&]}]; Table[a[n], {n, 1, 200}] (* Jean-François Alcover, Dec 09 2014, after Alois P. Heinz *)
Formula
a(n) = Product_{p in Primes with p
Comments