cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187005 Triangle, read by rows, where row n equals the coefficients of y^k in R_{n-1}(y+y^2) for k=1..n where R_n(y) is the n-th row polynomial in y for n>1 with R_1(y)=y.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 8, 1, 4, 12, 29, 50, 1, 5, 20, 69, 202, 436, 1, 6, 30, 134, 538, 1880, 4912, 1, 7, 42, 230, 1164, 5404, 22108, 68098, 1, 8, 56, 363, 2210, 12646, 67092, 315784, 1122952, 1, 9, 72, 539, 3830, 25930, 166520, 997581, 5322126, 21488640, 1
Offset: 1

Views

Author

Paul D. Hanna, Mar 02 2011

Keywords

Comments

Triangles A187115 and A187120 are generated by a similar method, and have main diagonals that are also found in triangle A135080.

Examples

			Triangle begins:
1;
1, 1;
1, 2, 2;
1, 3, 6, 8;
1, 4, 12, 29, 50;
1, 5, 20, 69, 202, 436;
1, 6, 30, 134, 538, 1880, 4912;
1, 7, 42, 230, 1164, 5404, 22108, 68098;
1, 8, 56, 363, 2210, 12646, 67092, 315784, 1122952;
1, 9, 72, 539, 3830, 25930, 166520, 997581, 5322126, 21488640;
1, 10, 90, 764, 6202, 48386, 362556, 2591010, 17337444, 103541022, 468331252; ...
in which rows can be generated as illustrated below.
Row polynomials R_n(y) begin:
R_1(y) = y;
R_2(y) = y + y^2;
R_3(y) = y + 2*y^2 + 2*y^3;
R_4(y) = y + 3*y^2 + 6*y^3 + 8*y^4;
R_5(y) = y + 4*y^2 + 12*y^3 + 29*y^4 + 50*y^5; ...
where row n = the coefficients of y^k in R_{n-1}(y+y^2) for k=1..n;
this method is illustrated by:
n=3: R_2(y+y^2) = (y + 2*y^2 + 2*y^3) + y^4;
n=4: R_3(y+y^2) = (y + 3*y^2 + 6*y^3 + 8*y^4) + 6*y^5 + 2*y^6;
n=5: R_4(y+y^2) = (y + 4*y^2 + 12*y^3 + 29*y^4 + 50*y^5) + 54*y^6 + 32*y^7 + 8*y^8;
where the n-th row polynomial R_n(y) equals R_{n-1}(y+y^2) truncated to the initial n terms.
...
ALTERNATE GENERATING METHOD.
Let F^n(x) denote the n-th iteration of x+x^2 with F^0(x) = x.
Then row n of this triangle may be generated by the coefficients of x^k in G(F^n(x)), k=1..n, where G(x) is the g.f. of A187009:
G(x) = x - x^2 + 2*x^3 - 6*x^4 + 20*x^5 - 80*x^6 + 348*x^7 - 1778*x^8 + 9892*x^9 - 64392*x^10 + 449596*x^11 + 15449192*x^12 +...
and satisfies: [x^(n+1)] G(F^n(x)) = 0 for n>0.
The table of coefficients in G(F^n(x)) begins:
G(x+x^2) : [1, 0, 0, -1, 2, -14, 44, -348, 1476, -14148, ...];
G(F^2(x)): [1, 1, 0, -1, -2, -10, -24, -231, -654, -9276, ...];
G(F^3(x)): [1, 2, 2, 0, -6, -26, -108, -570, -3216, -22622, ...];
G(F^4(x)): [1, 3, 6, 8, 0, -54, -324, -1776, -10594, -71702, ...];
G(F^5(x)): [1, 4, 12, 29, 50, 0, -616, -4846, -32686, -228926, ...];
G(F^6(x)): [1, 5, 20, 69, 202, 436, 0, -8629, -84140, -680298, ...];
G(F^7(x)): [1, 6, 30, 134, 538, 1880, 4912, 0, -143442, -1672428, ..];
G(F^8(x)): [1, 7, 42, 230, 1164, 5404, 22108, 68098, 0, -2762748, ..];
G(F^9(x)): [1, 8, 56, 363, 2210, 12646, 67092, 315784, 1122952, 0, ..]; ...
of which this triangle forms the lower triangular portion.
...
TRANSFORMATIONS OF DIAGONALS BY TRIANGLE A135080.
Given main diagonal = A135081 = [1,1,2,8,50,436,4912,68098,...],
the diagonals can be generated from each other as illustrated by:
_ A135080 * A135081 = A187006 = [1,2,6,29,202,1880,22108,315784,...];
_ A135080 * A187006 = A187007 = [1,3,12,69,538,5404,67092,997581,...];
_ A135080 * A187007 = [1,4,20,134,1164,12646,166520,2591010,...].
Related triangle A135080 begins:
1;
1, 1;
2, 2, 1;
8, 7, 3, 1;
50, 40, 15, 4, 1;
436, 326, 112, 26, 5, 1;
4912, 3492, 1128, 240, 40, 6, 1; ...
		

Crossrefs

Cf. diagonals: A135081, A187006, A187007; row sums: A187008.

Programs

  • Mathematica
    f[p_] := Series[p /. y -> y + y^2, {y, 0, 1 + Exponent[p, y]}] // Normal;
    Flatten[ Rest[ CoefficientList[#, y]] & /@ NestList[f, y, 10]][[1 ;; 56]] (* Jean-François Alcover, Jun 09 2011 *)
  • PARI
    {T(n,k)=local(Rn=y);for(m=1,n,Rn=subst(truncate(Rn),y,y+y^2+y*O(y^m)));polcoeff(Rn,k,y)}
    for(n=1,10,for(k=1,n,print1(T(n,k),", "));print(""))
    
  • PARI
    {T(n,k)=if(k>n||k<1,0,if(n==1,1,sum(j=k\2,k,binomial(j,k-j)*T(n-1,j))))}
    for(n=1,10,for(k=1,n,print1(T(n,k),", "));print(""))

Formula

T(n,k) = Sum_{j=[k/2],k} C(j,k-j)*T(n-1,j) for n>=k>1 with T(n,1)=1 and T(n,k)=0 when k>n or k<1.
Main diagonal equals column 0 of triangle A135080, which transforms diagonals in the table of coefficients of the iterations of x+x^2.
Triangle A135080 also transforms diagonals in this triangle into each other.
Diagonal m of this triangle equals column 0 of the m-th power of triangle A135080, with diagonal m=1 being the main diagonal.