A187029 Number of 4-step one or two collinear space at a time queen's tours on an n X n board summed over all starting positions.
0, 24, 1344, 7056, 19568, 39348, 66360, 100380, 141408, 189444, 244488, 306540, 375600, 451668, 534744, 624828, 721920, 826020, 937128, 1055244, 1180368, 1312500, 1451640, 1597788, 1750944, 1911108, 2078280, 2252460, 2433648, 2621844
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..0..0..0....2..0..3..4....0..0..0..4....0..0..0..0....0..2..0..0 ..0..0..0..1....0..1..0..0....1..2..3..0....2..3..0..0....4..1..3..0 ..0..0..3..4....0..0..0..0....0..0..0..0....1..0..0..0....0..0..0..0 ..0..0..0..2....0..0..0..0....0..0..0..0....0..4..0..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..31
Crossrefs
Cf. A187027.
Formula
Empirical: a(n) = 3504*n^2 - 18540*n + 24444 for n>5.
Conjectures from Colin Barker, Apr 20 2018: (Start)
G.f.: 4*x^2*(6 + 318*x + 774*x^2 + 602*x^3 + 117*x^4 - 9*x^5 - 56*x^6) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>8.
(End)
Comments