cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187038 Row sums of number triangle A187037.

Original entry on oeis.org

1, 2, 3, 2, 0, 2, 5, 2, 0, 2, 2, 2, 0, 2, 7, 2, 0, 2, 2, 2, 0, 2, 4, 2, 0, 2, 2, 2, 0, 2, 9, 2, 0, 2, 2, 2, 0, 2, 4, 2, 0, 2, 2, 2, 0, 2, 6, 2, 0, 2, 2, 2, 0, 2, 4, 2, 0, 2, 2, 2, 0, 2, 11, 2, 0, 2, 2, 2, 0, 2, 4, 2, 0, 2, 2, 2, 0, 2, 6, 2, 0, 2, 2, 2, 0, 2, 4, 2, 0, 2, 2, 2, 0, 2, 8, 2, 0, 2, 2, 2, 0, 2, 4, 2, 0, 2
Offset: 0

Views

Author

Paul Barry, Mar 08 2011

Keywords

Comments

Apparently, apart from signs, same as A269735 (with a shift). If so, the g.f. for this sequence is obtained from that for A269735 by replacing x by -x. - N. J. A. Sloane, Mar 11 2016
For construction, see Barry, 2011. Although the paper doesn't treat especially this sequence, it outlines a general method for creating such sequences. - Antti Karttunen, Sep 30 2018

Crossrefs

Programs

  • PARI
    up_to = 128;
    A187034aux(n,k) = if(k>n,0,if(n<=2*k, (-1)^(n-k), 0));
    A187034downshifted_and_negated(n,k) = if(k==n,1,-A187034aux(n-1,k));
    A187038list(up_to) = { my(m1=matrix(up_to,up_to,n,k,A187034downshifted_and_negated(n-1,k-1)), m2 = matsolve(m1,matid(up_to)), v = vector(up_to)); for(n=1,up_to,v[n] = vecsum(m2[n,])); (v); };
    write_A187036_and_A187038list(up_to) = { my(m1=matrix(up_to,up_to,n,k,A187034downshifted_and_negated(n-1,k-1)), m2 = matsolve(m1,matid(up_to)), v187036 = (m2[,1]~), v187038 = vector(up_to,j,vecsum(m2[j,]))); for(n=1,up_to,write("b187036.txt", n-1, " ", v187036[n]); write("b187038.txt", n-1, " ", v187038[n])); }; \\ For computing both at the same time
    v187038 = A187038list(1+up_to);
    A187038(n) = v187038[1+n]; \\ Antti Karttunen, Sep 29 2018

Extensions

More terms from Antti Karttunen, Sep 29 2018